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Abstract

The Strategic Petroleum Reserve (SPR) cavern fluid velocity model for

natural convection uses the Modified Local Similarity (MLS) method to

analyze the boundary layer behavior. In order to use the MLS approach,

boundary layer velocity and temperature profiles are calculated in terms of

local similarity variables based on the natural convection equations.

Modifications were made to the local similarity equations enabling con-

sideration of turbulent flow and mixed convection conditions. The details

of these changes are addressed in thisreport.

For turbulent flow, an existing model was modified for application to

local similarity conditions. For mixed convection, the natural convection

local similarity equation set was modified to meet the appropriate boundary

conditions. This model is the first application of the natural convection

local similarity equation set to mixed convection. In addition, the tra-

ditional shooting method used to solve the local similarity equations was

unreliable so an alternate method was developed.

The local similarity models developed in this report for turbulent flow

and mixed convection are compared to the available experimental data. The

models perform reasonably well when compared to the limited data, and the

numerical method was found to be much more reliable and robust than the

traditional method. With these modifications to the local similarity

approach, the full range of conditions needed for the MLS method in the SPR

velocity model can be calculated.
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I. Introduction

The Strategic Petroleum Reserve (SPR) cavern fluid velocity model for

natural convection developed by Webb (1988a) uses the Modified Local

Similarity (MLS) method to analyze the boundary layer behavior. The MLS

method is based on the traditional local similarity methodology with

modifications to ensure conservation of energy as the boundary layer

develops (Webb (1988b)). In order to use the MLS approach in the cavern

fluid velocity model, boundary layer velocity and temperature profiles must

be calculated in terms of similarity variables considering the conditions

encountered in SPR caverns.

Typical features of an SPR cavern are depicted in Figure 1 with refer-

ence to Bryan Mound Cavern 105. The approximate cavern dimensions are a

radius of loo-150 feet and an overall height of 2000 feet; the top of the

cavern is about 2000 feet underground in a large salt dome. Most of the

cavern is filled with crude oil, which overlies a shallow brine layer. At

the top of the cavern, the temperature of the salt is about 120°F. The

geothermal temperature gradient is approximately .014"F/ft  of depth, and

the salt at the bottom of the cavern is 30°F hotter than that at the top,

or about 150°F. The oil is introduced to the cavern piping system at

approximately 70°F.

The fluid velocity in the caverns is caused by the geothermal tempera-

ture gradient in the surrounding salt and the large fluids-to-salt tempera-

ture difference. Since the salt is hotter than the oil or brine, heat is

added to the fluids near the walls causing the fluid to rise due to buoy-

ancy. With this upward flow near the walls, the flow is downward in the

center of the cavern, and the center fluid temperature is stratified with

the higher temperature fluid on top. This natural convection flow pattern

will continue for 30 years or more due to the large extent of the salt

region. Highly turbulent conditions with Rayleigh numbers up to 1016 are

expected due to the large height of the caverns (Webb (1988a)).

For application to SPR caverns, boundary layer conditions which must be

considered for the MLS method include laminar and turbulent flow, environ-

mental fluid temperature stratification, and mixed convection with opposing

boundary layer and center region velocities. Laminar flow and environ-

mental fluid temperature stratification can be handled directly by the

local similarity approach if the similarity parameters can be defined as

done by the MLS method. However, local similarity has not generally been

1
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Figure 1. Typical features of an SPR cavern.
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extended to turbulent conditions. The only application of the approach to

turbulent flow has been performed by Noto and Matsumoto (1975). For mixed

convection conditions, local similarity based on the natural convection

equations has never been done since the traditional form is incompatible

with the applicable boundary conditions.

In order to apply the local similarity approach to SPR caverns, modi-

fications have been made to the appropriate equation set to accommodate

turbulence and mixed convection conditions. This report addresses the

changes that were made to calculate the necessary boundary layer profiles.

In addition, the traditional numerical method used to solve the local

similarity equations was found to be unreliable for the modified equation

set and another approach was found as detailed in this report. Details of

the fluid velocity model and of the MLS approach are given elsewhere (Webb

(1988a,1988b)) and are not discussed in this report.

Local Similarity Approach

In order to understand the changes described in this report, the tra-

ditional local similarity method will be presented and discussed. The

local similarity method is the basis of the MLS approach developed by Webb

(1988b) and used in the SPR velocity model (Webb (1988a)). To illustrate

the local similarity approach, the similarity equations for natural convec-

tion along a vertical surface will be derived, and the local similarity

assumptions will be imposed.

Consider a boundary layer as depicted in Figure 2. The steady-state

natural convection boundary layer mass, momentum, and energy conservation

equations for a constant temperature environment are (Jaluria (1980))

mass

x-momentum

uaU+vaU a2u
a x ay

= gB(T - Tf(x)) + Y -
aY2

(1)

(2)
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energy

(3)

where the Boussinesq approximations for natural convection have been used.

The natural convection boundary layer conservation equations for mass,

momentum, and energy given above are coupled partial differential equations

for the boundary layer behavior and are time-consuming to solve. However,

for appropriate boundary conditions, these partial differential equations

(PDEs) can be transformed into ordinary differential equations (ODES)

through the local similarity approach. The resulting ODES are much easier

to solve than the original PDEs.

According to Sparrow and Gregg (1958) and Yang (1960), similarity only

exists for two specific distributions of the temperature difference between

the wall and the fluid: the power-law and the exponential distributions.

As evaluated by Gebhart and Mollendorf (1969) and by Webb (1988b), the

exponential distribution has significant non-physical behavior and is

therefore not often used. The more useful power-law distribution is

employed in the following example.

For the power-law similarity distribution, the wall-to-fluid

temperature difference must be of the form

AT(x) = Tw(x) - Tf(x) - N xn (4)

where two common values of n are 0.0 for uniform wall temperature and 0.2

for uniform wall heat flux.

If the fluid temperature is nonuniform, the variation must be of the

form

JN n
Tf(x) - Tr - 4n x - -& AT(x) (5)

where the reference temperature, T,, is the fluid temperature at x-0. If

the fluid temperature is constant, J is equal to 0.

5



For a vertical flat plate in a uniform temperature fluid (J-O.),

application of the similarity approach with the power-law distribution

reduces the boundary layer PDEs to the following set of equations:

,2
#

, t t
f + (n+3) f f" - 2 (n+l) f + 6 = 4X f'g - f

e*af
axI

(6)

, t
l9Pr + (n+3) f B' - 4 n f ' B - 4x

1
f'% - B'E]

where the stream function and other variables are

Gr 1'4
4-4 -yI I y f(x,rl)

ad 2uua-=-
ay

Grli2 f'
X X

vLX

T(v)
'(') = T (x)

- Tf(x)

W - TfW

Grx -
g B x3 Uw(x) - TfW

2
Y

(7)

(8)

(9)

(10)

(11)

(12)

,
denotes d/dq.

The above equations are subject to the following boundary conditions

f(0) = 0. (equivalent to zero mass flow at the wall) (13)

f'(0) - 0. (equivalent to u - 0. at the wall) (14)

f'(m) - 0. (equivalent to u = 0. at a>

e(0) = 1. (equivalent to T(0) = Tw>

e(m) = 0. (equivalent to T(a) = Tf>

(15)

(16)

(17)



The preceding similarity equations for the natural convection boundary

layer are still partial differential equations due to the RHS of both

equations. In order to greatly simplify the equation set, the RHS of each

equation is often assumed to be equal to zero. In this case, f and 0 are

only a function of t7, and the equations become

, , , ,2
f + (n+3) f f" - 2 (n+l) f + B - 0 (18)

, ,
9
or + (n+3) f 0' -4nf'l-0 (19)

This assumption will be approximated for small x values or if the partial

derivatives of f, f', and 6' are small with respect to x. This procedure is

referred to as the local similarity approach since the resulting equations

are independent of x and are therefore local. Under this assumption, the

natural convection equations reduce to two ODES instead of the three PDEs

given earlier.

The local similarity technique was first applied to natural convection

by Pohlhausen as a supplement to the experiments of Schmidt and Beckmann

(1930) who gave approximate solutions to the equations. Numerical solution

of the equations was first provided by Ostrach (1953) with the use of a

digital computer. Since then, local similarity solutions have emerged as

an important analytical tool for analyzing natural convection under certain

conditions. Examples of situations which are often analyzed by the local

similarity approach include vertical surfaces with constant temperature or

constant heat flux wall conditions, and buoyant jets and plumes (Jaluria

(1980)).

The traditional similarity approach, while being powerful, has limited

applicability due to the restrictions on the forms of the temperature

variation. In the above example, the solution is only applicable if the

temperature difference is of the power-law form. The Modified Local

Similarity (MLS) approach developed by Webb (1988b) has significantly

improved the usefulness of the similarity approach by providing a reason-

able definition of the similarity parameters for non-similar boundary

conditions.



The local similarity approach (and MLS extension) is an approximate

technique that is extremely attractive since only two coupled ODES have to

be solved for the boundary layer solution. In addition, the solution at

any x location is independent of the solution at other x locations. A

problem with the method, however, is that the uncertainty of the approach

in unknown. This concern led to the development of the local nonsimilarity

approach (Sparrow, et al. (1970,197l)  and Minkowycz and Sparrow (1974)) in

which the partial derivatives are retained. Additional differential equa-

tions are used to evaluate the partial derivatives in the basic conserva-

tion equations while keeping the equations independent of solutions at

other x locations like the local similarity method. By keeping the partial

derivatives, the error is much smaller in the local nonsimilarity approach

than for the local similarity method.

While the local similarity method is not as accurate as the local

nonsimilarity method, the local similarity method has a feature that is

critical for application to SPR in that the results can be easily

tabulated. The boundary layer results are just a function of the fluid

properties and the similarity parameters n and J. Thus, for a known fluid,

if the local values of n and J can be determined, the boundary layer

results can be evaluated. .Evaluation  of n and J is done in the present

case through the MLS method developed by Webb (1988b). In contrast, the

local nonsimilarity approach is dependent on the fluid properties, the

similarity parameters n and J, & the location x. Tabulation of the

results for the local nonsimilarity approach is much more complex than for

the local similarity method due to the additional x parameter. The

development of the MLS approach, which imposes conservation of energy as

the boundary layer develops, has also significantly reduced the error of

the local similarity procedure as shown by Webb (1988b). In addition, no

method comparable to the MLS approach is available for the local nonsimi-

larity method to evaluate the n and J values for nonsimilar boundary con-

ditions. Therefore, in the present application for SPR caverns, the local

similarity approach as modified by the MLS method is employed.



II. Numerical Method

As discussed in the Introduction, the local similarity approach reduces

the natural convection boundary layer conservation equations from a set of

three coupled partial differential equations (PDEs) to two coupled ordinary

differential equations (ODES), or

t , t
f + (n+3) f

I t

f - 2 (n+l>
,2

f

, t
e
or + (n+3) f 19' -4nf'fl-0

+ e - 0 (18)

(19)

which are considerably easier to solve than the PDE set.

The standard procedure to solve this set of coupled ODES is to break

the equation set down into five first order ODES. The shooting method is

then employed to simultaneously solve the ODE equation set using, for exam-

ple, the Runge-Kutta ODE equation solver (Jaluria (1980)). The values of

f"(0) and 0'(O) are guessed and iterated upon until the boundary conditions

f'(m) and 19(a) are met within the desired tolerances. The iteration pro-

cess is schematically depicted in Figure 3 for the velocity profile. The

process continues until the solution hits the target at Q.

Application of the shooting method to solve the above equations leads

to a number of problems. The end point, qm, has to be specified. Common

practice is to initially set the end point to a small value. Once the

shooting method converges for this end point, the value is increased. If

the results do not change significantly with a larger end point, the pro-

cess is assumed to have converged. However, if the results are substan-

tially different, further increase in q,,, is required. Convergence is

typically judged from the changes in the guessed values of f"(0)  and B'(O)

with an increase in Q,,.

A number of problems can occur when the above procedure is used.

First, the simultaneous numerical integration of five ODES can "blow up" if

the initial guesses are significantly different than the correct answers.

In this case, the initial guesses have to be changed and/or the value of

the end point, I)~, decreased. Therefore, it is wise to start out with a

known solution and proceed from there. For example, if the laminar

velocity profile for a Prandtl number of 80 were needed, the results for a

9



ITERATIONS

Figure 3. Typical iterations for the shooting method (after Jaluria

(1980)).
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Prandtl number of 100 could be used as a starting guess. Laminar local

similarity results for a variety of Prandtl numbers for constant heat flux

and constant wall temperature conditions are tabulated by a number of

authors such as Jaluria (1980) and Gebhart (1985).

Second, even if the initial guesses are reasonably close to the correct

answers, the change in the values of f"(O) and 6'(O)  for the next iteration

needs to be determined. An excellent procedure for this problem is given

by Nachtsheim and Swigert (1965) who use a least squares procedure to mini-

mize the error in order to determine the change in f"(O) and 6'(O).  For

laminar natural convection conditions, convergence is usually rapid for

this approach with reasonable initial guesses.

Third, the need for asymptotic values of f' and 6 at qaD leads to the

two additional restrictions on the solution of f"(m) - 6'(m) - 0. which are

needed to obtain a unique solution to the problem. These restrictions have

been incorporated into the scheme for choosing the updated values of f"(0)

and f?'(O) by Nachtsheim and Swigert (1965). Their method also provides an

alternate way of choosing r] cD through their definition of the error term.

This approach is vastly superior to monitoring changes in f"(0) and 6'(O)

as discussed earlier.

Finally, when the value of the end point is large, the shooting method

can be susceptible to small errors which can build up through the multiple

integration processes, and the whole procedure can diverge. Thus, determi-

nation of an appropriate end value can be difficult. While this problem

can often be alleviated by a more accurate ODE solver, this is not always

the case. Laminar conditions do not usually encounter this problem. How-

ever, turbulent calculations often result in very large values of the end

point, and the shooting method often fails as encountered in this study and

in the work of Gominho and White (1984) as discussed by White (1988).

In order to overcome the problems with the shooting method, especially

for turbulent flow and mixed convection conditions, the Box finite differ-

ence method developed by Keller (1971) has been employed in this study.

This method is most often used to solve PDEs, especially for boundary layer

calculations, and has been extensively tested by Cebeci and Smith (1974)

and Cebeci and Bradshaw (1977,1984). The use of a finite difference ap-

proach instead of the shooting method has been suggested in Bejan (1984) in

the discussion of the shooting method for natural convection, although the

idea was not developed further. Blottner (1975) and Keller and Cebeci

11



(1972) mention the procedure for solution of the similarity equations for

forced convection but not for natural convection.

The Box method consists of writing the higher order equations as a set

of first order equations similar to the shooting method procedure. The

equations are then written in terms of central differences at m specified

mesh point locations. After linearization of the equations, if needed, a

linear system of m-l equations with m-l unknowns must be solved. The

distinguishing feature of the Box method as opposed to other numerical

methods is the form of the central difference which readily allows for

nonuniform mesh point spacing.

As an example, consider the first order equation

f' - g

where g is a known function. For the mesh points n and n+l, the Box method

representation is simply

n+l
f - f" n+1/2 _ gn + g

n+l

A9 -g 2 * (21)

Thus, the expression is centered about the middle of the "box" between the

two mesh points instead of being centered at a mesh point. By using this

approach, variable mesh point spacing is easily accomplished.

The Box method has been used in the present investigation to solve the

local similarity boundary layer equations. The ODE equation set is broken

down into five first order ODES, and the finite difference approximations

are done using the Box method. Newton's method is employed to solve the

equations for the correction terms, and the resulting matrix is solved by a

matrix inversion routine. The variables are updated by the calculated

correction terms and the procedure continues until convergence. Keller

(1978) outlines the above approach for PDEs.

The Box method automatically imposes the five boundary conditions

listed earlier. Thus, when the method converges for a given set of condi-
tions, the boundary conditions are automatically satisfied. The only prob-

lem is determination of the end point, a problem that is also faced with

the shooting method.

12



In the present approach, the end point is reached when the error for

the calculated profile is acceptably low. The error definition is that

given by Nachtsheim and Swigert (1965) which is

, 2 2 2
E- (f'(m) -f,) + f " cQ) + e2(-) + 8’ (4. (22)

However, since the first and third terms are automatically satisfied by the

Box method (note that they are not automatically satisfied in the shooting

method), the error term reduces to the square of the slopes at Q,,, or

2
E - f "2(~) + 6’ (+. (23)

The above error definition is used to determine the location of the end

point, w; the end point is increased until the error is acceptably low.

For laminar natural convection calculations, the error is deemed acceptable

when the value is less than 1. x 10-10. For turbulent and mixed convection

conditions, errors less than 1. x lo-10 were desired but often only values

of 1. x 10-a were obtainable due to the sensitivity of the model to certain

parameters and the large end points encountered. However, when combined

with the conservation checks discussed next, the results are satisfactory.

As an additional check on the results, conservation of energy and

momentum is evaluated. From Webb (1988b), assuming f"(m) - O., the inte-

grated natural convection local similarity boundary layer equations are

Momentum

9w 9Q

6 drl

0 0

Energy

9Q

I

8’
(5n + 3)

W
f'e drj - - -

Pr

0

I I

f
W

903

'J

I
f' dq.

0

13
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The use of the above integrated conservation equations can point out

programming errors for either the shooting method or the Box approach. For

example, if momentum is not conserved even for large values of the end

point or for conditions such as laminar flow where the answers are known,

the programmed equations are probably incorrect. If convergence of f"(O)

were used, programming errors may not be found. While this criterion has

some problems of its own, such as accurate evaluation of the integrals,

convergence has typically been to within 1.0% or less including turbulent

flow conditions.

An example using this criterion is a very high Rayleigh number (1016)

turbulent flow case employing the standard shooting method. The end point

was assumed to have been reached when the f"(0) and 6'(O)  values did not

change by more than 1% for a significant increase in qco. However, applica-

tion of the conservation equations revealed that conservation of energy was

in error by a factor of 5 and that, in fact, the end point had not been

reached. Further use of the shooting method for larger end points was not

practical since the shooting method "blew up" or diverged. The above Box

method was subsequently developed and successfully applied to the problem.

In contrast to the shooting method, the Box method procedure is

extremely stable, even when the initial guesses are poor. Turbulence also

poses no problem to the method, and very large values of the end point are

handled without difficulty. On the average, about 50 mesh points are used

in the Box scheme to calculate the boundary layer profile compared with

about 100-200 intervals for the shooting method with a fifth order Runge-

Kutta method. Computer times for one iteration with each technique are

comparable. However, the number of iterations required with the Box method

are much smaller than for the shooting method since the zero velocity and

temperature boundary conditions are automatically satisfied and larger

changes in the end point values can be used, Differences between the

results of the two methods are indistinguishable on a plot when the

shooting method converged; the values of f"(0) and 6'(O)  generally differ

by less than 0.1 percent. Some typical results for laminar flow are shown

in Table 1 along with tabulated results from Gebhart (1985). All the

results in this table for the Box method had errors less than 1. x lo-lo.

The above integrated conservation equations apply to laminar and turbu-

lent natural convection conditions but not to mixed convection flows. The

appropriate integrated equations can only be developed after the local

similarity equation modifications are completed. The integrated equations

are presented in Section IV.
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Table 1

Comparison of Results of Shooting Method and Box Method

for Laminar Flow Similarity Profiles

f"(0) f'(max)

Shooting* Box Shooting* Box

Uniform Wall Temperature (UWT)

- e’(o)

Shooting* Box

0.6760 0.6761 0.2762 0.2762 0.5046 0.5048

0.6422 0.6423 0.2513 0.2515 0.5671 0.5673

0.4818 0.4818 0.1484 0.1485 0.9540 0.9546

0.4192 0.4192 0.1149 0.1151 1.1693 1.1702

0.2517 0.2517 0.0442 0.0443 2.1913 2.1946

Uniform Heat Flux (UHF)

0.6389 0.6394 0.2514 0.2520 0.5756 0.5759

0.6069 0.6071 0.2288 0.2292 0.6453 0.6456

0.4543 0.4545 0.1345 0.1347 1.0759 1.0768

0.3951 0.3951 0.1042 0.1043 1.3164 1.3173

0.2367 0.2367 0.040 0.0400 2.4584 2.4616

* - from Gebhart (1985)
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At the time of the development of the Box finite difference method dis-

cussed above, no other application of the finite difference approach to the

local similarity natural convection equations was known. During the final

preparation of this report, a finite difference approach for solving the

local similarity equations was published by Henkes and Hoogendoorn (1989a).

Their reason for developing an alternative method was the same as en-

countered in the present investigation and that of Gominho and White

(1984); the traditional shooting method was unreliable. However, their

numerical approach assumes constant mesh point spacing. While this‘assump-

tion is adequate for laminar flow conditions, uniform spacing is not appro-

priate for turbulent conditions. Although the approach given in the pres-

ent report and that of Henkes and Hoogendoorn (1989a) are related since

they are both finite difference methods, the present scheme is the more

versatile of the two methods since it allows for variable mesh point

spacing, a must for turbulent flow.

16



III. Turbulence

Data and models for turbulent natural convection are limited compared

to forced convection conditions. Only a few investigations have obtained

turbulent natural convection mean (average) velocity and temperature pro-

file data for the simple configuration of a vertical flat plate. Most of

the natural convection turbulence models are based on forced convection

applications with little or no modification. Much more experimental and

analytical work remains to be done for turbulent natural convection condi-

tions.

For the present evaluation, only turbulent natural convection data and

models applicable to vertical flat plates will be considered since this

configuration is the most often studied. Note, however, that turbulent

natural convection data in enclosures have been briefly discussed by Webb

(1988a) in his report on the SPR velocity model.

The state of the fluid in natural convection is generally referred to

in terms of a Grashof or Rayleigh number. Two Trariations exist depending

on the type of experiment or analysis performed. For the constant wall

temperature case, the normal Grashof and Rayleigh numbers are employed

which are

Grx - g p x3 AT
2 (26)

Rax- GrxPr (27)

where AT is the temperature difference between the wall and the fluid. For

the constant heat flux case, however, an alternate definition is used. The

two forms are differentiated by a superscript * on the constant heat flux

value, and the definitions are

Grz - g '
x4 "

k y2
- Gr,Nu,

Rat - Grz Pr - RaxNux.

(28)

(29)

The two forms are simply related through the local Nusselt number.

17



Some other parameters are used in data presentations. The velocity is

often normalized with respect to u*, which is a velocity characteristic of

natural convection. Two definitions are commonly used which differ by a

factor of two. In this report, the following definition is used

*
U - 2 (g B x AT) l/2

This definition is particularly convenient since the actual velocity

divided by u* is exactly equal to the velocity similarity variable f'

f' -
2 VXGrl/2  u =

X
2 (g p"x AT)1'2 - +'

(30)

(31)

The other definition of u* is simply without the factor of 2.

Transition between laminar and turbulent flow is generally considered

to be at a Grashof number of approximately 109 for a vertical flat plate.

The exact location of the end of laminar flow and the start of turbulent

conditions is difficult to determine and depends on parameters other than

just the Grashof number (Jaluria and Gebhart (1974)). However, a value of

109 for the Grashof number for the start of turbulence is often used. For

SPR caverns, the Grashof number is expected to be considerably higher

(-1014) (Webb (1988a)), so the boundary layer will be highly turbulent.

A. Natural Convection Data

Early investigations into turbulent natural convection focused pri-

marily on the influence of turbulence on the mean fluid velocity and tem-

perature profiles. Later on, additional turbulence quantities have been

measured during the studies such as the fluctuation of the velocities and

the temperature. The presentation given here will show mostly mean fluid

velocity and temperature profiles due to the ultimate decision to use a

mixing length turbulence model as discussed later on in this report.

The data presentations have been given in a variety of coordinates.

Some investigators use physical quantities such as velocity and distance,

but most data are reported in transformed variables similar to f' and q in

the local similarity approach. The definition of the coordinates used in

the data presentations will be included in each figure as appropriate.

18



The first measurements of turbulent mean velocity and temperature

profiles were made by Griffiths and Davis (1922) in air. These data were

the basis of the turbulent velocity and temperature profiles shapes assumed

in the integral analysis of turbulent natural convection flow performed by

Eckert and Jackson (1951). However, Eckert and Jackson (1951) were not

able to reproduce the magnitude of the measured velocities and concluded

that the measurements were inaccurate.

Cheesewright (1968) was the next investigator to measure mean velocity

and temperature profiles in turbulent flow. Data for air on a constant

temperature vertical plate were obtained for a variety of different Grashof

numbers and are shown in Figures 4 and 5. A comparison of the data with

those of Griffiths and Davis (1922) shows that the two sets of data are in

reasonable agreement. Poor agreement between the assumed profiles used by

Eckert and Jackson (1951) and the data was noted. Even use of the experi-

mental data for the maximum velocity and boundary layer thickness did not

bring the profiles into reasonable agreement with the data. Thus, the

turbulent profiles of Eckert and Jackson (1951) do not fit the data.

For many years, the Cheesewright data were the primary target of the

developers of turbulence models for natural convection as will be seen in

the next section. However, Hoogendoorn and Euser (1978) noted some heat

balance inconsistencies in the data that led them to believe that the

velocity values were too small. They obtained some limited data which

indicate that the velocity data of Cheesewright are low as shown in Figure

6. This figure also shows predictions made by the model of Mason and Seban

(1974) which is discussed briefly later. In response, Cheesewright and

Ierokiopitis (1982) investigated the velocity data problems by using a

different measurement technique (Laser Doppler Anemometer (IDA) versus hot-

wire anemometer) and provided new velocity data that are indeed higher than

the earlier information. The new data of Cheesewright and Ierokiopitis are

given in Figure 7 with a comparison to the earlier Cheesewright (1968)

data. Note that this figure is adapted from To and Humphrey (1986). These

data are not contained in the acknowledged reference but are probably from

a more detailed report by Cheesewright and Ierokiopitis. Additional data

are given in Figure 8 from Cheesewright and Ierokiopitis (1982).

Other investigations of turbulent mean profiles performed about the

time of the first Cheesewright study were performed by Warner and Arpaci

(1968) and by Lock and Trotter (1968). Warner and Arpaci (1968) measured

temperature profiles and heat transfer coefficients; velocity data were not

obtained. Lock and Trotter (1968) present mean velocity and temperature

19
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Figure 4. Cheesewright (1968) velocity data (Cheesewright (1968)).
velocity units = 2f' (note use of alternate u* definition).
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Figure 6. Hoogendoorn and Euser (1978) data compared to Mason (1974)
predictions and Cheesewright (1968) data.
(Hoogendoorn and Euser (1978))
velocity units - 2f'
distance units = (y/x) GrO.1
(Same coordinates as Cheesewright (1968) in Figure 4)
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Figure 7. Comparison of early Cheesewright (1968) and later Cheesewright
and Ierokiopitis (1978) velocity data (after To and Humphrey
(1986)).
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Figure 8. Cheesewright and Ierokiopitis (1978) velocity profile data
(labelled L.D.A.) (Cheesewright and Ierokiopitis (1978)).
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profiles as well as temperature fluctuation data for water on a constant

heat flux vertical plate. Some of the mean velocity data are shown in

Figure 9. As indicated in the paper, the boundary layer is not completely

turbulent even at the highest value of Grashof number reported. The

velocity data seem high, since the peak f' value for the data is 0.32

compared to a peak f' value for laminar flow of about 0.11 for water with a

Prandtl number of 10.25 (see Table 1). These data are discussed in more

detail in Section 1II.C.

Shortly thereafter, Vliet and Liu (1969) published mean velocity and

temperature data for water on a vertical plate with constant heat flux

including Nusselt number and velocity fluctuation data. The velocity and

temperature profile data, which are shown in Figure 10, have shapes similar

to the air data of Cheesewright (1968). Fujii, et al. (1970) measured

Nusselt numbers and mean and fluctuating temperatures for a vertical

cylinder in water, spindle oil, and Mobiltherm oil. Unfortunately, no

velocity data were obtained. However, these temperature data, which are

given in Figure 11, are valuable due to the wide range of Prandtl numbers

involved. Kutateladze, et al. (1972) reported some mean and fluctuating

velocity data for ethyl alcohol as the working fluid as shown in Figure 12.

More recently, Miyamoto, et al. (1982) published mean velocity data as

well as other turbulence parameters for air on a constant heat flux verti-

cal plate. The mean velocity profile data are shown in Figure 13a. To and

Humphrey (1986) calculated some turbulent Prandtl number information for

the Miyamoto, et al. (1982) data which is shown in Figure 13b. Also shown

are turbulent Prandtl number predictions by To and Humphrey (1986) using

their stress models.

Finally, Tsuji and Nagano (1988) present some mean and fluctuating data

for air on an isothermal vertical plate. According to the authors, prob-

lems have been noticed in most of the other investigations due to environ-

mental fluid temperature stratification. Tsuji and Nagano (1988) took care

to minimize this effect in their experiments. Comparison of their mean

velocity and temperature data with others is consistent with a smaller

ambient temperature stratification. The mean velocity profile data given

in Figure 14a show a larger boundary layer for Tsuji and Nagano than for

other investigators. Velocity data for a variety of Grashof numbers are

shown in Figure 14b. The mean temperature profile data also indicate the

larger boundary layer trend as shown in Figure 14~.
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Figure 9. Lock and Trotter (1968) water velocity data (Lock and Trotter
(1968)).
velocity units = f'
distance units = 0.1 inches.
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Figure 10a. Comparison of Vliet and Liu (1968) water velocity data with
Cheesewright (1968) air data (Vliet and Liu (1968)).
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Figure lob. Comparison of Vliet and Liu (1968) temperature data with others
temperature units - 8.
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Figure lla. Fujii, et al. (1970) temperature data for water (Fujii, et al.
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Figure llb. Fujii, et al. (1970) temperature data for spindle oil (Fujii,
et al. (1970)).
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Figure 12. Kutateladze, et al. (1972) velocity data for ethyl alcohol.
1. Ra- 2.15x1010; x - 275 mm; AT = 11.8'C; T, = 29.2"C.
2. Ra- 4.83~1010;  x - 363 mm; AT - 11.6"C; T, - 29.4"C.
___ Integral Theory for Pr - 13.2; x = 360 mm; AT = 11.6"C.
(Kutateladze, et al. (1972))
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Figure 14a. Tsuji and Nagano (1988) air velocity data comparison (Tsuji and
Nagano (1988)).

Figure 14b. Tsuji and Nagano (1988) air Velocity data (Tsuji and Nagano
(1988)).
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Figure 14~. Tsuji and Nagano (1988) air temperature data (Tsuji and Nagano
(1988)).
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B. Natural Convection Models

Yang and Aung (1985) summarize a number of approaches to turbulent

natural convection including eddy viscosity models, stress models, large

eddy simulation, and the vortex method. Based on computer time restraints

in the present application, the only acceptable approach is the eddy vis-

cosity method. From Appendix A, the applicable conservation equations for

an eddy viscosity turbulence model are:

mass

“u+ av 0ax ay=

x-momentum

,g+,e a
aY

g B CT - Tf(x)) + a
aY

(,+,)a"
t ay

energy

aT aT a
uz+v, = ay L

(a + Qt) iz
ay1

(A-12)

(A-13)

(A-14)

where closure equations for vt and ot have to be defined.

A variety of eddy viscosity models for vt exist ranging from the simple

to the complex. The various categories are generally referred to as zero-,

one-, and two-equation models. The number of equations in the category

designation is the number of turbulent parameter PDEs involved in the eddy

viscosity model. Thus, in the zero-equation category, the eddy viscosity

is specified by an algebraic relationship, not by solution of PDEs in con-

junction with the conservation equations. Similarly, a two-equation model

uses two PDEs to define the eddy viscosity which are solved simultaneously

with the conservation equations.

Models for the eddy thermal diffusivity, at, are generally expressed in

terms of a turbulent Prandtl number, which is defined as

%
Prt = a

t
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in analogy with the molecular Prandtl number

Pr = i. (33)

Only a few models for the turbulent Prandtl number exist, and these

models are of the zero-equation or algebraic type; the subject is reviewed

in detail by Reynolds (1975). The most notable model is that by Cebeci

(1973) which will be discussed later. However, in many practical applica-

tions, a constant turbulent Prandtl number of 0.9 is sufficient, at least

for forced flow situations.

The one- and two-equation eddy viscosity models are too complicated for

use with the local similarity approach since they require simultaneous sol-

ution of the boundary layer and turbulent parameter PDEs. Therefore, in

the present study, a zero-equation eddy viscosity model will be used.

Zero-equation eddy viscosity models have been successfully applied in

forced convection for years as exemplified by work summarized by Cebeci and

Smith (1974) and by Cebeci and Bradshaw (1977,1984). While it is recog-

nized that one- and two-equation models provide results superior to zero-

equation approaches, the computer time and similarity equation restraints

imposed on SPR calculations necessitate the use of a zero-equation model.

The appropriate local similarity form of the above conservation equa-

tions for a uniform fluid temperature (J-O) is

Yt ,, I ,2
(1 + y f ) + (n+3) f f" - 2 (n+l) f + B = 0

% 1((&+,F ) 0')' + (n+3) f 8' - 4 n f' B = 0
t

(34)

(35)

which reduce to the laminar form of the local similarity equations given

earlier (equations (18) and (19)) for zero eddy viscosity. The different

eddy viscosity models are discussed next.
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1. Zero-Eauation Models

Two types of zero-equation models have been extensively used - the

original eddy viscosity form in which the variation of vt is prescribed,

i.e., v,-f(Y) 3 and the Prandtl mixing length hypothesis which relates the

eddy viscosity to the absolute value of the local velocity gradient, or

% I l2 aUI Iay *

For the mixing length case, the turbulent shear stress becomes

, r

-uv -u au I 12 au au
t ay I Iay ay’

(36)

(37)

Problems with mixing length eddy viscosity models exist since the model

predicts that the eddy viscosity is proportional to au/ay. Thus, at velo-

city maximums or minimums, the eddy viscosity is zero. In contrast, the

more accurate one- and two- equation eddy viscosity models predict an in-

creasing eddy viscosity at the velocity maximum in natural convection as

shown by Henkes and Hoogendoorn (1989b) in Appendix B, although the turbu-

lent shear stress is zero at the velocity maximum for all eddy viscosity

models. This shortcoming of the mixing length approach was also recognized

by Prandtl in his original work according to Schlichting (1969).

The mixing length eddy viscosity problem has been investigated by Doshi

and Gill (1970,1971)  for forced convection. Their reformulation of the

mixing length significantly improved the model predictions compared to data

for forced convection in a duct with two different wall temperatures. How-

ever, this reformulation will not be used in the present investigation at

this time. This problem is discussed further in Appendix B.

Four applications of a zero-equation eddy viscosity model have been

performed for natural convection. Cebeci and Khattab (1975) and Noto and

Matsumoto (1975) used forced convection models without modifications for

buoyancy effects. Yang and Lloyd (1985) present a zero-equation model for

enclosures, while the Popov and Yan'kov (1985) approach is similar to that

of Cebeci and Khattab (1975) and Noto and Matsumoto (1975) in that existing

forced convection models are used. However, these last two models have

explicit modifications to account the effect of buoyancy. Each model is

discussed in detail below.
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a. Cebeci and Khattab

Cebeci and Khattab (1975) and Khattab (1975) investigated use of the

Cebeci and Smith (1974) forced convection turbulence mixing length model

for natural convection conditions. Inner and outer regions are used in the

approach in accordance with the Cebeci and Smith (1974) model. The eddy

viscosity in the inner region is the same as that used by Cebeci and Smith

(1974). In the outer region, the original model is in terms of the free

stream velocity. While this definition is satisfactory for forced convec-

tion, application to free convection caused a change from an eddy viscosity

concept to a mixing length approach in the outer region. The equations

used by Cebeci and Khattab (1975) are

c I 12 auI Iay
li = 0.4~ (1 - exp(-y/A))

1 = 0.075 6
0

1 - min(li,lo)

A = 26 v bw/d
-l/2

au
7

W
- ' ay wallI

(inner region)

(outer region)

(36)

(38)

(39)

(40)

(41)

(42)

where Khattab (1975) defines 6, the boundary layer thickness, as the loca-

tion where f' - 0.01 and f" < 0.

The minimum mixing length from both regions is used. For the present

set of equations, this operation means that the eddy viscosity will in-

crease from zero at the wall to a maximum value dependent on the boundary

layer thickness, 6. The eddy viscosity will remain constant further out in

the boundary layer. This behavior is consistent with forced convection

experimental data as shown in Figure 15.

For forced convection, the boundary layer thickness, 6, is typically

calculated as the location where the boundary layer velocity is within 0.5%

of the free stream value (Cebeci and Bradshaw (1984)). However, in natural

convection, the free stream velocity is zero, so Khattab (1975) used the
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Figure 15. Distribution of mixing length in forced convection (Cebeci and
Bradshaw) (1977)).
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alternate definition given above. A ratio of the velocity at the edge of

the boundary layer to the peak value may be more appropriate due to the

variation in peak f' values as given earlier in Table 1.

The turbulent Prandtl number used by Cebeci and Khattab (1975) is based

on the model of Cebeci (1973). However, when a constant turbulent Prandtl

number of 0.9 is used, very little difference was noted. A variable turbu-

lent Prandtl number is only important for low Prandtl number fluids accord-

ing to Cebeci and Khattab (1975). The turbulent Prandtl number equations

based on the Cebeci (1973) model as given by Cebeci and Smith (1974) are

5
Pr, = - -

0.4 (1 - exp(-y/A))

Ot
0.44 (1 - exp(-y/B))

B- B* v bwh) -l/2 , prw

B* =
5
C Ci (loglOPr)

i-l

i-l

(43)

(45)

'i
- 34.96, 28.79, 33.95, 6.33, -1.186 (i-l to 5) (46)

The results presented by Cebeci and Khattab (1975) are based on solu-

tion of the PDE equation set for natural convection with the above turbu-

lence model. The equations were integrated up the wall from the leading

edge to determine the local velocity and temperature profiles.

Figure 16 compares the turbulent velocity profile predictions by

Khattab (1975) with turbulent data for air (Cheesewright (1968)) and for

water (Vliet and Liu (1969)). Reasonable agreement between the predictions

and the data is shown for the velocity normalized to the peak value. No

comparison of the actual velocities are presented by Cebeci and Khattab

(1975) or by Khattab (1975); only normalized values are given.

Figure 17 presents the temperature profile data-model comparisons.

Figure 17a shows adequate agreement although the data have a considerable

amount of scatter. The results given in Figure 17b show excellent

agreement between the data and the model for air (Cheesewright (1968)),

water (Fujii, et al. (1970)), and spindle oil (Fujii, et al. (1970)). Also

shown are the predictions made by Mason and Seban (1974) which will be

discussed briefly later on.
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Figure 16. Cebeci and Khattab (1975) velocity profile data-model
comparison (Khattab (1975)).
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Figure 17a. Cebeci and Khattab (1975) temperature data-model comparison for
air (Khattab (1975)).

I.

1.

1.1

1.

liz2LIl.*
-0.01 0.1 1 IO

0 Fujii  Data (1970)
-- Mason and Seban (1974) Model
- Cebeci and Khattab (1975) Model

10-l 1.2 lfl ld

NuWlx)

Figure 17b. Cebeci and Khattab (1975) temperature data-model comparison for
air, water, and oil (Cebeci and Khattab (1975)).
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In addition, Figure 17b shows the variation of the turbulent Prandtl

number calculated by the model. Note that for air, the value approaches

1.3 at the wall and goes to 0.9 further out. This behavior is not in-

consistent with the turbulent Prandtl number experimental data shown in

Figure 13b, although the large scatter in the data prevents any firm

conclusion of the applicability, and a constant value of 0.9 or 1.0 also

seems reasonable based on the data.

Figures 18a-c show the Nusselt number, or heat transfer coefficient,

predictions for the Cebeci and Khattab (1975) model with data for air,

water, and spindle oil. In all cases, the agreement between the model and

data is reasonable, although the good comparison may be a little misleading

for the last two cases. For the first prediction, transition at a Ra,

number of 6. x 108 was used in the computations. However, for the last two

plots, the calculations by Cebeci and Khattab were made by matching the

experimental results for a Ra, number of 5.5 x 1010. Therefore, for the

last two cases, only the slope of the predictions should be compared with

the data. Figure 18d is the spindle oil Nusselt number variation for the

Cebeci and Khattab (1975) model as presented by Cebeci and Bradshaw (1984).

Note that the Nusselt number predictions are lower than those presented

earlier by Cebeci and Khattab (1975). Apparently, the values in Figure 18d

are those predicted by the Cebeci and Khattab model without being modified

to match certain experimental results as was done for Figures 18b and 18~.

b. Noto and Matsurnoto

Noto and Matsumoto (1975) applied the forced convection eddy viscosity

expression given by Kato, et al. (1968) to natural convection conditions

assuming a turbulent Prandtl number of 1.0. Noto and Matsumoto (1975) used

the model in a local similarity set of equations to predict the natural

convection boundary layer velocity and temperature profiles. The eddy

viscosity expression is

2
qJ = 0.4 y+ (1 - exp(-0.0017 y+ )) (47)

where

(TJP) 1’2
Y+’ u Y
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a) Air (Cebeci and Khattab (1975)).
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Figure 18. Cebeci and Khattab data-model comparisons.
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In contrast to the data shown earlier in Figure 15, the eddy viscosity and

mixing length increases indefinitely as y increases. The implication of

this behavior will be discussed in more detail later.

A velocity profile data-model comparison for the Noto and Matsumoto

(1975) results is shown in Figure 19a including the peak velocity. This

figure gives results for the air data of Cheesewright (1968) which indi-

cates that the predicted shape is similar to experimental data. The peak

velocity predicted by the model is about 30% too high in this figure. How-

ever, as discussed in detail earlier in this report, the velocity data

reported by Cheesewright (1968) are low. The results of Mason and Seban

(19?&) are also shown on this figure; their prediction virtually lies on

top of that by Noto and Matsumoto. Figure 19b gives the temperature pro-

file data-model comparison which shows good agreement although the scale is

too compressed for an accurate evaluation. Figure 20 shows the predicted

Nusselt numbers for air and for oil. The results compare well to the data.

c. Yanz and Llovd

Yang and Lloyd (1985) present a zero-equation turbulence model designed

for modelling the behavior of vented enclosures. The application of the

model is primarily in the area of room fires to predict the behavior of the

fire and the resulting smoke. The model considers shear stresses in all

directions as exemplified by the equations presented by Yang and Lloyd

(1985) for the two-dimensional case as given below

2 au
7
xx * Ret ax ' 7xy

(49)

where

Ret =
PO o. H

(50)

'eff

and
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Figure 19a. Noto and Matsumoto (1975) velocity data-model comparison (Noto
and Matsumoto (1975)).
velocity units - 2f'

l/4distance units - y/x Gr, .

Figure 19b. Noto and Matsumoto (1975) temperature data-model comparison
(Noto and Matsumoto (1975)).
temperature units - 8

l/4distance units - y/x Grx .
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Figure 20a. Noto and Matsumoto (1975) Nusselt number
for air (Noto and Matsumoto (1975)).
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Figure 20b. Noto and Matsumoto (1975) Nusselt number data-model comparison
for oil (Noto and Matsumoto (1975)).
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(51)

The turbulent Prandtl number is assumed equal to 1. The effective viscos-

ity includes laminar and turbulent contributions and is presumably normal-

ized to the laminar value. The mixing length expression is

1
i? - lc

I

(u2 + v
2 l/2

)

I
(El2 + (g)2 + (%)2 + ($)2

1

l/2

I ($)2 + (g)2 + (g)2 + (g)2 1
l/2

+ [[$I’ + [$$I2 + [!$I’ + [i$]2]1’2

where n is an adjustable constant equal to 0.2 based on comparison of the

model to data. The gradient Richardson number, Ri,, is equal to

(53)

where T, u, and y are normalized values and 6, is a reference velocity.

The model has some desirable features in that it is symmetrical with

respect to x and y, and buoyancy is included through the gradient Richard-

son number. The model is discussed further by Yang and Lloyd (1985). How-

ever, while the approach seems reasonable, the only data-model comparisons

presented are for the entire enclosure model, such as the temperature dis-

tribution in an outlet doorway; no comparison to boundary layer data is

given. Since these data-model comparisons are not presented, modifications

to the model needed for use in this study cannot be evaluated, and this

model is not discussed further in this report.
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d. PODOV  and Yan'kov

Popov and Yan'kov (1985) present a model for natural convection that is

based on forced convection eddy viscosity formulae. The buoyancy effect is

included through a Richardson number and through inclusion of the enthalpy

gradient on the shear stress. The shear stress and heat flux equations are

12p ah

Prt 8y

k
q = - (--

ah

=P
+pat ) ay’

(54)

(55)

The expressions given above are equivalent to those derived in Appendix

A except for the second term on the RHS of the shear equation. In this

model, the effect of the temperature (or enthalpy) gradient is included in

the shear stress. The turbulent eddy viscosity expression is

2
2 YtO+
% - 2

i

2 2I 1co + 4
2 % i -Y Q) (a Vt I

w

(56)

where the subscripts 0 and co refer to values as Ri + 0 and = which are

ytLm = m l2 [ CL Lt 1$1]"

and the Richardson number is

(57)

(58)

(59)
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The - and + sign in the last term of the eddy viscosity expression is

applicable for Ri > 0 and < 0, respectively. The expression for vtO uses a

modification to the Prandtl mixing length which is discussed in Appendix B.

The value of the mixing length is based on expressions derived from

forced convection data. The mixing length equation is

1 u+-I
u

where u+ is given by

(60)

[<12- 0.5+ [ 0.25+ [-‘&I2 - -ym2q$] 1’2

u* = (7,/P)1’2

(61)

(62)

and

k]b-1. = 1 K y+ [ 1 - t;n&y:/Vl) ] 0 S y+ d 20 (63)

*co =

y * Y/6

I K Y+ @(Y>

Jklz
1 + KnY sin(rY)

*(0.5) exp[ - r+12

20 < y+

0 I Y IO.5
(64)

Y > 0.5

(65)

and equations for Q(Y) and (r/rJb.l. are given by Popov (1970). The

expression for (~/~~)b.l. is the Reichardt formula for near wall eddy

viscosity in forced convection. The q(Y) and (~/~~>b.r. equations are based

on Coles' wake law, which is also for forced convection, Details on
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the original models of Reichardt and Coles can be found in Hinze (1975).

Values of 7, m, n, n, and qr are discussed by Popov and Yan'kov.

In the above model, the boundary layer thickness, 6, is defined by

6

i-
- 'rn

Q/2
= 2.5 (66)

where 6,,, is the distance where u - 0.5 sax and ym is the location of the

maximum velocity. Figure 21 indicates the usefulness of this relationship

as the outer region velocity profiles collapse onto a single curve shape

for a number of different fluids.

Results from this model including comparison  to data are shown in Fig-

ure 22a for air. Curve 1 and 1' are with and without the buoyancy modifi-

cations, respectively. The velocity data are from Cheesewright  (1968),

while the temperature data are from Cheesewright  (1968) and from Warner and

Arpaci (1968); Nusselt number data are also included. The predictions  from

a number of other investigators including Noto and Matsumoto  (1975) and

Mason and Seban (1974) are shown in the figure. Results for the Popov and

Yan'kov model without buoyancy effects will be evaluated;  buoyancy effects

will not be addressed  in the present investigation. In this manner, all

the mixing length models can be assessed on an equal basis. Without the

buoyancy modifications, the Popov and Yan'kov model velocity profile

results are poorer than those of Noto and Matsumoto. These results are

very similar to those of Cebeci and Khattab (1975) for the same data as

shown later.

Figure 22b shows the velocity profile predictions for the Vliet and Liu

(1969) water data and for ethyl alcohol data of Kutateladze, et al. (1972).

Comparisons for the water data look good although,  as discussed later, the

predictions of Mason and Seban (1974) are similar. The model overpredicts

the ethyl alcohol velocity data by about 10 percent; this model is the only

known comparison to these data.

Without buoyancy, the basic Popov and Yan'kov model gives results

similar or not as good as other zero-equation  models. The Popov and

Yan'kov approach offers no significant  advantage compared to other

approaches and has the disadvantage  of a complicated  form. Therefore, the

Popov and Yan'kov model has not been investigated  further in this study.
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Data

a-h Kutateladze,  et al (1972) for ethyl alcohol.
i-k Cheaaeuri6ht  (1966) for air.
fxedictions
Popov and Yan’kov Model for
1,l'  ethyl alcohol
2 air
3.3' rater
4 mercury

Figure 21. Natural convection velocity profile normalization (Popov and
Yan'kov (1985)).
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Figure 22a. Popov and Yan'kov Data-Model Comparison  for Air (Popov and
Yan'kov (1985)).

Q&g
I,11 Vliet and Liu (1969) for water
111,IV Kutateladze, et al. (1972) for ethyl

alcohol

Predictions
1.2 Popov and Yan'kov Model for water

3.4

3'

Popov and Yan’kov Model for ethyl
alcohol
Eckert Integral Method for ethyl
alcohol (Kutateladze, et al. (1972))

Figure 22b. Popov and Yan'kov data-model comparison  for water and ethyl
alcohol (Popov and Yan'kov (1985)).
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2. One- and Two-Eauation Models

As discussed briefly earlier in this section and in Appendix A, one-

and two-equation  eddy viscosity models are much more complicated  than zero-

equation models since additional PDEs are added to the equation set. For

example, the turbulent shear stress for an eddy viscosity model is

, t au-uv -ut By' (67)

The value of vt for a two-equation  k-c model is (Yang and Aung (1985))

k2
%

-c -
P t

(68)

where k and t are determined from the solution of appropriate PDEs for k

and t, and C/, is a constant.

Numerical  studies using the more complex one- and two-equation  models

have been conducted by Mason and Seban (1974), Plumb and Kennedy (1977),

Lin and Churchill (1978), To and Humphrey (1986), and Heiss, Straub, and

Catton (1988). In addition, To and Humphrey (1986) have used an algebraic

stress turbulence  model for their studies, while Heiss, et al. (1988)

investigated  algebraic  and Reynolds stress models. Henkes and Hoogendoorn

(1989b) compared the Cebeci and Khattab (1975) model (referred to as the

Cebeci and Smith (1974) model) and a number of two-equation  k-c models to

"generic" turbulent data. The results from some of these investigations

are summarized in the next section.

C. Data-Model  Comnarisons

Data-model  comparisons  for the zero-, one-, and two-equation  eddy

viscosity turbulence models are presented in this section to indicate the

predictive differences  in the various approaches. All of the one- and two-

equation studies, with the exception of Mason and Seban (1974), only

present data-model  profile comparisons  for turbulent conditions in air.

Mason and Seban (1974) present air and water data-model comparisons for

their one-equation model. In addition, only the Popov and Yan'kov (1985)

model has been compared with the ethyl alcohol data of Kutateladze, et al.
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(1972). Thus, the data-model comparisons are very limited in scope with

respect to the fluid involved and are primarily concerned  with air.

Results from the zero-equation  models were not compared to the Cheese-

wright and Ierokiopitis (1982) data by the original authors. Heiss, et al.

(1988) did a partial comparison  for the Cebeci and Khattab (1975) and Noto

and Matsumoto (1975) approaches for the velocity and Nusselt number data.

However, for both models, Heiss, et al. (1988) used a constant turbulent

Prandtl number of 0.9 which is not in agreement with either original model.

The net effect is probably small, but it precludes an exact comparison of

the original models to the data. In their comparison, Heiss, et al. (1988)

numerically integrated the boundary layer equations up the plate.

Figure 23 compares the mean velocity profiles predicted by a number of

methods with the Cheesewright  and Ierokiopitis data as presented by To and

Humphrey (1986). Figure 23a shows the zero-equation  velocity profile

results given by Heiss, et al. (1988). The Cebeci and Khattab model over-

predicts the velocity peak and underpredicts  the velocity further out. The

Noto and Matsumoto  model results agree well with the peak value, while the

velocity further out is only slightly underpredicted. Additional  discus-

sion of the Noto and Matsumoto (1975) model is given in the next section.

Also shown are the results from an early forced convection  zero-equation

model by Escudier (see Heiss, et al. (1988)) which is very similar to the

Cebeci and Khattab (1975) approach. Figure 23b from Heiss, et al. (1988)

and Figure 23c from To and Humphrey (1986) compare one- and two-equation

results and those for a k-c model and an algebraic stress model (ASM) with

the same data. All of these models predict the peak velocity well, and

most of the models slightly underpredict  the velocity further out.

Comparisons were also performed  by Henkes and Hoogendoorn (1989b) using

the Cebeci and Khattab (1975) model and nine different two-equation  k-c

models. The predictions  were compared to "generic" turbulent velocity and

temperature  profiles for air for a Grashof number of about 1011 (see Henkes

and Hoogendoorn (1989b) for the exact range). Figure 24 shows the velocity

profile data-model comparison. The Cebeci and Khattab (1975) model over-

predicts the velocity maximum and underpredicts  the velocity further out.

In contrast, most of the k-c models perform much better than the Cebeci and

Khattab (1975) model and are in reasonable agreement with the data. Over-

all, these results are similar to those presented by Heiss, et al. (1988).

Note that Henkes and Hoogendoorn (1989b) were not able to duplicate the k-c

model results reported by To and Humphrey (1986).
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Figure 23a. Zero-equation model comparison  with velocity data (Heiss, et
al. (1988)).
velocity units = f'
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Figure 23b. Two-equation model comparison  with velocity data (Heiss, et al.
(1988).
velocity units = f'

Figure 23~. Data-model  comparison for velocity including stress models (To
and Humphrey (1986)).
velocity units - f'
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Figure 24. Air velocity profile data-model comparison  (Henkes and
Hoogendoorn (1989b)).

velocity units =
(ga:T#IJ
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Mean temperature profile comparisons have been given by .To and Humphrey

(1986) for air as shown in Figure 25 based on the early Cheesewright  (1968)

data and on the Miyamoto, et al. (1982) data. All the models overpredict

the temperature at moderate distances from the wall. Comparison  of the

zero-equation results was presented earlier in Figures 17 and 19 with

similar results. The results of Henkes and Hoogendoorn (1989b) are given

in Figure 26. This comparison indicates that most of the models slightly

underpredict the temperature  near the wall but overpredict  it further out.

The Cebeci and Khattab (1975) model, however, does just the opposite as it

overpredicts  near the wall and underpredicts  further out. One interesting

comment should be made about the Cebeci and Khattab (1975) temperature

profile which has also been seen in the present investigation. The temper-

ature profile has a "kink" in it at a r value of about 1. This "kink"

occurs at the velocity maximum and is related to the mixing length defini-

tion which is proportional to the mean velocity gradient. This "kink" is

also seen in the results predicted by the present model as shown later.

Problems with the mixing length methodology at velocity maximums or

minimums are discussed in more detail in Appendix B.

Nusselt number results are presented  in Figures 27a and 27b from Heiss,

et al. (1988) and Figure 27c from To and Humphrey (1986). All the predic-

tions are in reasonable agreement  with the data. The Nusselt number

comparison  presented by Henkes and Hoogendoorn  (1989b) is shown in Figure

28. The Cebeci and Khattab (1975) model gives a low value of the Nusselt

number. The largest discrepancy between the models is related to the

location of the start of turbulence.

All of the above data-model  comparisons are for air. The water data-

model comparison  for the mean velocity is given in Figure 29 for the Mason

and Seban (1974) one-equation model, and the predictions  agree well with

the data. Note that the same Mason and Seban (1974) model did not agree as

well with the air data as shown in Figure 23~. The Mason and Seban (1974)

model also agrees well with water temperature profile data as shown earlier

in Figure 17b. In contrast with the numerous data-model comparisons  for

air, the results of Mason and Seban (1974) and of Popov and Yan'kov (1985)

in Figure 22b are the only comparisons available for water. For ethyl

alcohol, the Popov and Yan'kov (1985) model compares reasonably well to the

data as shown previously in Figure 22b and is the only known comparison to

those data.
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Figure 26. Comparison of model predictions  to generic air temperature  data
(Henkes and Hoogendoorn (1989b)).
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Figure 27a. Zero-equation model comparison  with Nusselt number data (Heiss,
et al. (1989)).
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Figure 27b. Two-equation model comparison  with Nusselt number data (Heiss,
et al. (1988)).
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Figure 27~. Data-model comparison for Nusselt number including stress models
(To and Humphrey (1986)).
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D. Overall

Based on the above data-model comparisons, the zero-equation  eddy vis-

cosity models should provide a reasonable picture of the effect of turbu-

lence on the velocity and temperature profiles as well as the Nusselt

number. The agreement, while only fair for air and ethyl alcohol, is good

for water. No data-model comparison  is available for higher Prandtl number

fluids such as oil. Some improvement could be gained from one-equation or

two-equation models, but the added complexity and computer time and the

question of applicability  to a new fluid are not indicated for use in the

SPR fluid velocity model.

The Noto and Matsumoto  (1975) model looks good when compared to air

data, but Gominho and White (1984) have noted some problems with the ap-

proach, especially in the outer region of the boundary layer. The Cebeci

and Khattab (1975) approach, while not predicting  the data as well as the

Noto and Matsumoto  (1975) model, is based on a well-established forced

convection model and gives reasonable predictions. Other zero-equation

models have been discussed earlier, and only the Cebeci and Khattab (1975)

and Noto and Matsumoto (1975) models will be considered  further.

While the Noto and Matsumoto (1975) model has been applied to the local

similarity  equations, the Cebeci and Khattab (1975) approach has not been

and will have to be modified as developed in the next section. Both models

as applied to the local similarity equation set will be compared to the

available data discussed earlier to allow for a more complete evaluation  of

the two models under the conditions that they will be used.

C. Local Similaritv Turbulence Model

1. Model Modification

The Noto and Matsumoto (1975) model does not need to be modified for

application to the local similarity approach since the eddy viscosity is

simply a function of y+, or distance from the wall. However, the Cebeci

and Khattab (1975) method needs some revision. As summarized earlier, the

eddy viscosity is divided into two regions. The eddy viscosity in the

inner region is simply a function of y and the local velocity gradient,  so

no changes have to be made in this region. In the outer region, the eddy
viscosity is proportional  to the boundary layer thickness and the velocity
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gradient. Based on the local similarity requirement, the boundary layer

thickness is based on the velocity profile at that location only; no

feedback from the thickness at other locations can be used.

A straightforward  application of the Cebeci and Khattab (1975) model

would be to calculate the boundary layer thickness from the calculated

velocity profile. However, this procedure is divergent. If the boundary

layer thickness is overestimated, the outer region viscosity will also be

too high. In turn, this behavior will increase the boundary layer thick-

ness, and the process will diverge. Similarly, underestimation of the

boundary layer thickness will result in too small a viscosity, and the same

divergent cycle occurs. Thus, the present form of the Cebeci and Khattab

(1975) model is incompatible with the local similarity  requirement.

The Popov and Yan'kov (1985) velocity profile shape discussed earlier

was also briefly considered. However, the relationship  (Equation 66) only

gives the boundary layer thickness in terms of the value where u - 0.5

%ax- This expression would lead to the same divergent cycle as discussed

above.

In order to apply the Cebeci and Khattab (1975) model to local simi-

larity, an expression  for the boundary layer thickness is needed which will

cause the iterative procedure to converge. George and Capp (1979) devel-

oped a theory for natural convection turbulent boundary layers on a heated

vertical surface which indicates that the thickness of the velocity

boundary layer scales with the velocity or displacement  boundary layer

thickness,  6*, which is defined as

co

6* = I U
U dY

0
max

(69)

where sax is the maximum boundary layer velocity. Support for this

scaling concept is from the velocity profile air data of Cheesewright

(1968) and the water data of Vliet and Liu (1969) as shown earlier in

Figure 10. Based on these data, a preliminary relationship  is developed

for the boundary layer thickness as

y(u-0) - 6 - 2.5 6*. (70)
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This relationship  provides a feedback mechanism on the boundary layer

thickness used in the eddy viscosity  model which allows for convergent

iteration in the similarity method. The boundary layer thickness from the

velocity profile and the displacement thickness, 6*! -iave different func-

tional relationships, and the iteration on the boundary layer velocity

profile converges.

To further support this relationship, some of the Miyamoto, et al.

(1982) data has been used. The displacement  thickness correlated in their

study is given by the equation

6* = 0.743 Gr*
-0.104

X.
X

The velocity data are given as velocity as a function of r, which is

r- ; Nux.

(71)

(72)

Using the appropriate Nusselt number correlation  given in the paper, and

estimating  the boundary layer thickness from the velocity plots, the bound-

ary layer thicknesses for the two turbulent velocity profiles reported are

in the range

6- 2.4 to 2.8 6* (73)

which is consistent with the value of 2.5 estimated  earlier. Therefore,

this preliminary relationship  will be used to close the Cebeci and Khattab

(1975) model for use in the local similarity approach. Since the constant

of 2.5 is uncertain, the value will be treated as a parameter in the data-

model comparison.
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2. Comnarison to Data

The predictions  of the local similarity Cebeci and Khattab and the Noto

and Matsumoto (1975) models will be compared to the natural convection

velocity profile data discussed earlier. Three curves are shown for the

modified Cebeci and Khattab model corresponding  to 6 values equal to 2.0,

2.5, and 3.0 times 6*. Table 2 summarizes the investigators, fluid, wall

conditions, and Grashof numbers involved. All the data have been trans-

formed into the local similarity  coordinates for consistent evaluation.

The conversion process is summarized  in Appendix C for each data set.

Uniform environmental  conditions have been assumed. The predictions  for

the local similarity Cebeci and Khattab model will be presented first for

all the fluids followed by the Noto and Matsumoto results.

Figure 30 gives the results for the modified Cebeci and Khattab model

for the air data listed in Table 2. A systematic overprediction of the

peak velocity peak by about 20-40% is noted. Of course, the peak velocity

overprediction is higher for the early Cheesewright  (1968) data which are

known to be low. For the most recent data (Tsuji and Nagano (1988)), the

peak velocity is overpredicted  by about 20%. The slope in the outer edge

of the boundary layer can be reasonably approximated  by a constant equal to

about 2.5 in the boundary layer thickness relationship, although this

number varies between 2.5 and 3.0 for the various data sets.

Figure 31 shows the local similarity Cebeci and Khattab model results

for the water data in Table 2. In contrast to the air data, the model

predictions  using the Cebeci and Khattab approach agree well with the Vliet

and Liu (1969) data including  the value of the peak velocity for both

Grashof numbers. Again, a constant equal to 2.5 in the boundary layer

thickness relationship  looks adequate.

The Lock and Trotter (1968) results are also shown in Figure 31. The

model predictions  are inconsistent  with the data. Upon closer examination

of the data, some problems are apparent. The data are inconsistent  with

that of Vliet and Liu (1969). According to information  given by Vliet and

Liu (1969) and by Jaluria (1980), the flow is probably laminar. In addi-

tion, the dimensionless  velocity results indicate a velocity peak at f' of

0.32. For laminar conditions, the peak f' value for the Prandtl number of

10.25 is about 0.11 from Table 1. Therefore, the data of Lock and Trotter

(1968) are questionable  and this data-model comparison will not be used in

the final evaluation of the turbulence model.
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Table 2

Data for Data-Model Comparison

Author

Air Data (Pr - 0.72)

Cheesewright  (1968)

Wall a, RanQe

Conditions*

Hoogendoorn and Euser (1978)

Cheesewright  and Ierokiopitis (1982) UWT

Miyamoto, et al. (1982) UHF

Tsuji and Nagano (1988)

Water Data (Pr - 6.7 - 10.25)

Vliet and Liu (1969) UHF

Lock and Trotter (1968)

Ethyl Alcohol (Pr - 13.2)

Kutateladze, et al. (1972)

UHF

3.0 x 1010

5.7 x 1010

8.65 x 1010

9.5 x 109

4.83 x 1010

1.2 x 10"

1.7 x 1011

1.55 x 1010

1.8 x 1011

1.9 x 1010

6.0 x lOlo

6.7 x 1OQ

1.63 x lo9

3.66 x 109

* - UWT - Uniform Wall Temperature

UHF - Uniform Heat Flux
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Figure 30. Local similarity  model comparison  to data for air.
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Figure 30 (continued).
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Figure 31. Local similarity model comparison to data for water.
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The data-model comparisons for the ethyl alcohol data from Kutateladze,

et al. (1972) are shown in Figure 32. The peak velocity is overpredicted

by the modified Cebeci and Khattab model by about 40%. A constant of 2.0

in the boundary layer thickness equation looks reasonable. The velocity

data are more like the laminar profile as shown in Figure 32a than the

turbulent predictions. This result is surprising in light of the excellent

data-model  agreement for water which has a similar Prandtl number and the

fact that the overprediction  by Popov and Yan'kov (1985) was only about

10%. This discrepancy  has not been fully resolved at the present time.

Figures 33, 34, and 35 show the data-model comparison  for the Noto and

Matsumoto model and the data for air, water, and ethyl alcohol, respect-

ively. In general, the predicted  peak velocity is slightly lower than for

the modified Cebeci and Khattab model and more in line with the data,

especially  for air and ethyl alcohol. However, the outer region of the

boundary layer including the boundary layer thickness is greatly overpre-

dieted by the Noto and Matsumoto (1975) model for all the data. The large

difference between the present results and the data is due to the eddy

viscosity formula. The eddy viscosity and effective mixing length increase

continuously  in contrast to data shown earlier in Figure 15. The present

results have been calculated by requiring conservation  of momentum and

energy in the boundary layer within 1% or less as discussed  in Section II.

In order to conserve momentum locally, which is consistent  with the local

similarity  assumption, the boundary layer must have negligible  shear at I]~.

The slope at qrn has to be very small with the large viscosity inherent in

the model, so the boundary layer thickness will be too large.

In contrast, the Noto and Matsumoto  (1975) model seems to compare

reasonably  well to data as shown earlier in Figure 19a and in Figure 23.

The velocity profile results given by Noto and Matsumoto  in Figure 19a have

been recalculated in Figure 36. Based on the local similarity  assumption

imposed by Noto and Matsumoto, momentum and energy should be conserved in

the profiles. For qoD equal to 29.5, the velocity profile predictions  are

reasonably consistent with those in Figure 19a. However, as shown in Table

3, momentum is not conserved within a factor of 2., and the error in energy

is 45%. Thus ( significant  conservation  problems may exist with the earlier

results of Noto and Matsumoto. Note that the Heiss, et al. (1988) results

given earlier in Figure 23 may not have the same problem since the conser-

vation equation were integrated along the plate and local similarity  was

not imposed.

67



Vhcily  Profile  For Pr I 13.2, Gr I 1.93E9
0.30 , , , , , , ! I

Veloclly  Profile For Pr 5 13.2, Gr t L~minsr

1:: 11

MSTANCE (II  ) DISTANCE (9 )

0.20
.-
=

1 0’s> 0 10

DO5

0 00 0 5 10 15 20 25 30 35 40

DISTANCE 01)

Velodfy Proflb For Pr t 13.2, Gr I 3.6689

0301

- uodnbd  cduci
.“d KItRUb  (W75)
6 = atI’

0 5 10 IS 20 25 30 3s 40

a) Laminar profile comparison. b) Turbulent prodictions.

Figure 32. Local similarity model comparison  to data for ethyl alcohol.
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Figure 33. Noto and Matsumoto (1975) data-model comparison for air.
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Figure 34. Noto and Matsumoto (1975) data-model comparison for water.
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Table 3

Noto and Matsumoto Conservation Results
for Pr-0.72

Conservation of Conservation of

Momentum' Enerevz

Laminar

10. 1.004 0.9998 6.2 x lo-11

Turbulent (Gr,-lO1O)

29.5 0.46 1.45 9.3 x 10-E

50. 0.55 1.18 1.4 x 10-C

100. 0.73 1.05 7.1 x 10-a

200. 0.89 1.012 2.4 x 1O-g

300. 0.947 1.006 3.0 x 10-10

400. 0.976 1.005 6.2 x lo-1

500. 0.993 1.004 1.8 x lo-11

600. 1.003 1.004 6.6 x lo-12

1 - Conservation of Momentum =

I I

f
W / II 6 dr] - (5 + 3n) J‘ fg2 dq ].

2 - Conservation of Energy =

8:--
Pr

5n + 3)
s

f'6 dq + .J j-f' d9-j.

Error

(74)

(75)
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Based on the above results, the local similarity Cebeci and Khattab

model performs better than the Noto and Matsumoto (1975) approach and will

be used in this investigation. The constant in the boundary layer thick-

ness relationship will be equal to 2.5, or

6= 2.5 6*. (76)

While the data-model comparisons for air and ethyl alcohol do not look

particularly good, the water results are encouraging. The discrepancy in

the ethyl alcohol data-model comparison is unresolved at the present time.

Other questions such as inclusion of buoyancy terms are currently under

investigation. Neglecting the ethyl alcohol data, the current model seems

to work better for higher Prandtl number fluids. This trend is also the

case for the one-equation model of Mason and Seban (1974) as shown earlier

in Figures 23c and 29. Whether the local similarity Cebeci and Khattab

model works well for oil is not known and will not be until data becomes

available.

The velocity predictions compared to the data have already been

presented earlier in Figures 30 to 32. Temperature profile and Nusselt

number comparisons to data will now be presented for the final similarity

model discussed above. Figure 37 compares the calculated temperature pro-

files to data and to the results presented by Cebeci and Khattab (1975).

The data are from Cheesewright (1968) for air (Pr-0.72) and from Fujii, et

al. (1970) for water (Pr-5.9) and oil (Pr-58.7). The profiles compare

reasonably well, although a "kink" is noted in each curve which corresponds

to the location of the velocity maximum and zero turbulent transport as

discussed earlier. Note that the "kink" is more severe for the local simi-

larity method than for the finite difference solution of Cebeci and Khattab

(1975). The reason for this difference is that the local similarity ap-

proach assumes negligible transport in the x-direction along the plate.

Transport in this direction is included in any finite difference

calculation such as that of Cebeci and Khattab (1975).

Nusselt number predictions are shown in Figure 38 along with the Cebeci

and Khattab (1975) predictions and some data. Figure 38a shows the compar-

ison for air which indicates that the local similarity modification has not

significantly altered the Nusselt number predictions of the original Cebeci

and Khattab (1975) approach. Figure 38b gives the same results for oil
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where the unmodified Cebeci and Khattab predictions as given by Cebeci and

Bradshaw (1984) are used. Again, the differences due to the local similar-

ity modification are small. No Nusselt number comparison for water has

been presented since unaltered Cebeci and Khattab results are not avail-

able.

Comparison of the similarity modified Cebeci and Khattab model to the

original model and to data indicates that the velocity predictions are

reasonable, although the predictions of the original and modified models

are probably too high by up to 30% compared to the data. The reason for

this overprediction is currently being investigated. Temperature and

Nusselt number predictions compare well to the original Cebeci and Khattab

(1975) predictions and to the data. Therefore, the local similarity modi-

fication gives good results compared to the original model and has not

significantly altered the behavior of the original model.
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IV. Mixed Convection

Mixed convection occurs when buoyancy (natural convection) and forced

convection forces act simultaneously. Depending on the direction of the

buoyancy force and the forced convection flow direction, mixed convection

can be classified as buoyancy assisted or buoyancy opposed. A recent

review of mixed convection is given by Jackson, Cotton, and Axcell (1989).

Buoyancy assisted mixed convection occurs if the buoyancy force and the

forced convection flow are in the same direction. For example, for a

heated plate, the buoyancy force is upward, and buoyancy assisted mixed

convection occurs if the forced convection flow is upward. Downward forced

flow over a cooled wall would also result in assisted mixed convection.

Buoyancy opposed mixed convection occurs when the two forces act opposite

each other, as in downward forced convection over a heated vertical wall or

upward forced flow over a cooled wall.

For buoyancy opposed conditions, the buoyancy force counteracts the

forced convection velocity, and two situations occur depending on which

force dominates in the near-wall region. If the buoyancy force is rela-

tively weak, the net effect will be a slight modification of the forced

convection velocity profile, but the velocity will be unidirectional in the

direction of the forced flow. However, if the buoyancy force is relatively

strong, "flow reversal" occurs in which the flow direction is different in

the inner and outer portions of the boundary layer. For example, the flow

may be upward near the wall due to the buoyancy force but downward far away

from the wall due to the forced convection. The various mixed convection

flow regimes are schematically depicted in Figure 39 for a heated wall.

The relative strength of the buoyancy to forced convection contribution

is measured by the ratio of the Grashof number to the Reynolds number

squared. This ratio can be expressed in terms of the natural convection

similarity variable fd, as

GrX
2

c =-=Gr
Y 1

Re2x
X

2 2 ,2’
U
oax

4 f a0

(77)

For laminar buoyancy opposed mixed convection, flow reversal has been

observed in air for e values above 0.20 (Ramachandran, Armaly, and Chen

(1985)).
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Figure 39. Mixed convection regimes for a heated wall.
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For application to SPR and the enclosure problem, the forced convection

effect on the profiles should be small since the free stream, or central

core, velocity is much smaller than the peak boundary layer value as shown

in Webb (1988a). The SPR flow pattern is clearly in the flow reversal mode

since the boundary layer flow is upward while the central core region velo-

city is downward. For the example shown in Webb (1988a), the fluid is

water, and the central core velocity is approximately 10 percent or less of

the peak boundary layer velocity. From Table 1, the peak velocity for pure

natural convection for water is approximately 0.13. Assuming that this

value does not change significantly for the small central core region velo-

city encountered, the central region value of fd, is about 0.013 which gives

<- 1500. Figure 40 gives some mixed convection heat transfer results for

various Prandtl numbers. Clearly, this large value of < indicates that

this flow is controlled by natural convection and that the present

application is buoyancy dominated.

Experimental and analytical efforts in the mixed convection regime have

been predominantly occupied with the effect of buoyancy on forced convec-

tion. In this case, the value of 5 is typically 1 or less, buoyancy ef-

fects are small, and forced convection approaches are appropriate. The

opposite case of forced convection effects on buoyancy flows with < much

larger than 1 where buoyancy effects dominate, such as in the present

application, has received much less attention. This lack of information in

the buoyancy dominated opposed mixed convection regime for laminar and

turbulent flow will be obvious in the following sections.

A. Laminar Conditions

1. Mixed Convection Data

Data for laminar mixed convection generally consist of heat transfer

coefficients or Nusselt numbers as a function of c. Velocity and temp-

erature data are only available from a few investigations. According to

Ramachandran, Armaly, and Chen (1985), Kliegel (1959) reported the first

mixed convection measurements for heat transfer in the assisted and opposed

mixed convection regimes not including the flow reversal region. Heat

transfer data were reported, but velocity and temperature profiles were not

measured. Gryzagoridis (1975) reported some additional assisted mixed con-

vection data which included velocity and temperature data. However, signi-

ficant differences exist between his data and various analyses. Hishida,

et al. (1983) reported some opposed mixed convection data for velocities
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and temperatures, again confined to the unidirectional regime. Some in-

consistent results are noted between the data and their numerical results.

Finally, Ramachandran, Armaly, and Chen (1985) report some assisting and

opposing velocity and temperature information. The flow reversal region

was not investigated. Comparison of their data with numerical predictions

indicates good agreement. As expected, heat transfer is increased for

assisted mixed convection while it is impaired for opposed conditions.

The data taken by Ramachandran, et al. (1985) are shown in Figure 41

along with results from the finite difference analysis. The similarity

variables used, F'(<,q) and q, are the forced convection form, or

uln
[ I

l/2

rl’ -UX Y*

(78)

(79)

For assisted mixed convection, the value of < is up to 16. which indicates

a reasonable buoyancy contribution to the velocity and temperature profiles

as can be inferred from the velocity profile data. For opposing flow, the

maximum value of c is 0.208, and the profiles are dominated by forced con-

vection. No data were reported for the flow reversal region in opposed

mixed convection.

2. Mixed Convection Models

A number of different techniques have been used to analyze laminar

mixed convection conditions, ranging from series solutions (Merkin (1969))

to local similarity based on the forced convection similarity variables

(Lloyd and Sparrow (1970)) to finite difference methods (Ramachandran, et

al. (1985)). The local similarity technique will be used for the present

application as required by the MLS approach. However, since natural con-

vection phenomena are dominant in the present application, the similarity

technique will be based on the natural convection equations, not on the

forced convection set.
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Local similarity techniques have been applied to mixed convection prob-

lems by Lloyd and Sparrow (1970) among others. However, the'se analyses

studied the effect of natural convection on forced convection and were

based on the forced convection local similarity equations. According to

Lloyd and Sparrow (1970), the natural convection local similarity equations

are not applicable to mixed convection. The reason for this statement can

be seen by inspecting the local similarity equations

, , 0 ,2
f + (n+3) f f" - 2 (n+l) f + B = 0 (80)

, I

e
or + (n+3) f t9' -4 nf'8 - 0. (81)

In the limit as r] + a, f"'(a) = f"(a) = B(e) = 0. For these conditions,

f'(a)  must equal 0. from the above local similarity equations, and the

nonzero f'(w)  boundary condition in mixed convection cannot be satisfied.

Therefore, the standard local similarity natural convection form is not

applicable to mixed convection conditions. Note that this limit is easily

satisfied by the forced convection similarity equations since the free

stream (a) condition is nonzero in the general forced convection case.

For a small buoyant effect on the forced convection equations, local

similarity based on forced convection gives reasonable results when com-

pared to local nonsimilarity and finite difference solutions according to

Ramachandran, Armaly, and Chen (1985). However, for t-1, differences of

12.6 and 15.7 percent are noted in the f"(O) values for the local similari-

ty technique compared to local nonsimilarity and finite difference results,

respectively, for the case of assisted mixed convection in air. Clearly,

for more dominant natural convective conditions such as encountered in the

present case, differences would be even greater, and the local similarity

approach based on the forced convection equations is not appropriate.

Currently, no local similarity mixed convection model exists based on

the natural convection similarity variables as needed for application of

the current model to SPR caverns. The present study is the first

application of the natural convection local similarity equations to mixed

convection. The required model is developed in the next subsection.
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3. Local Similarity Model

The natural convection local similarity equations are

, , # ,2
f + (n+3) f f" - 2 (n+l) f + 8 = 0 (82)

, ,
6
or + (n+3) f 8' - 4 n f ' B -Jf'- 0 (83)

where, for generality, the fluid temperature stratification variable, J,

has been included in the energy equation.

As mentioned earlier, in the limit as q -, a, the above momentum and

energy equations are not able to accommodate a nonzero velocity boundary

condition. In order to handle this boundary condition, some ad hoc modi-

fications have been made to the above similarity equations, and the result-

ing equations are

I I I

f + (n+3) f f" - 2 (n+l> [ff2 - A ff] + B = 0 (84)

, I
eor + (n+3) f 8' - 4 n f' t9 - J (f' - fi, = 0. (85)

where A is the sign of the local value of f'f&. Thus, the sign A depends

on whether the local velocity and the far-field velocity are in the same

direction or not. While these modifications are ad hoc, the form had to

satisfy certain requirements. The A term is needed to differentiate

between buoyancy assisted and opposed conditions. In addition, the

behavior of the expression is consistent with intuition. For opposed mixed

convection, an increase in fd, (larger opposing velocity) decreases the

maximum boundary layer velocity and the buoyancy mass flow rate. The

opposite trend occurs for assisted mixed convection. Finally, of course,

the term vanishes in the limit of pure natural convection (f&O).

The usefulness of the above model can be established by comparison to

appropriate experimental data. Ideally, the comparison should be made to

opposed mixed convection velocity and temperature profiles with flow rever-

sal. However, as discussed in the previous section, such data are not
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available. Therefore, the data of Ramachandran, et al. (1985) for assisted

mixed convection have been employed. The data consist of some forced con-

vection dominated data (typically < < 1) and some buoyancy dominated data

(typically < > 1). The present model will be compared against the detailed

velocity and temperature profile information for the three < values of

1.884, 7.324, and 16.021 as well as to the results of numerical analysis.

The data-model comparison for the present model is shown in Figure 42

in terms of the natural convection similarity variables, not the forced

convection ones. For the t value of 1.884, reasonable agreement between

the present simplified model and the numerical predictions is noted. The

peak velocity is slightly overpredicted as is the wall temperature gradi-

ent, but the ad hoc model seems reasonable. For the higher c numbers, the

agreement is much better. The velocity and temperature profiles are

surprisingly well predicted for all three cases considering the simple ad

hoc modifications made to the local similarity equations. The changes seem

more than adequate for natural convection dominated mixed convection, at

least for the buoyancy assisted case. Since the buoyancy opposed case of

interest in the present study is buoyancy dominated even more so than the

above data, the present method is expected to be adequate for these condi-

tions. However, until applicable data become available to adequately test

the present model, full evaluation is impossible.

B. Turbulent Conditions

1. Mixed Convection Data

Turbulent mixed convection data have generally been obtained for the

forced convection dominated case. For this condition, the effect of buoy-

ancy on forced convection heat transfer is unexpected (Jackson and Hall

(1978)). Contrary to laminar flow behavior, for assisted mixed convection,

heat transfer can be lower under certain conditions than for pure forced

convection. For opposed mixed convection, heat transfer can be enhanced

over the forced convection value. Some velocity and temperature profile

data have been obtained for the forced convection dominated case (Carr, et

al. (1973), Nakajima, et al. (1980)) with a maximum value of e of 0.002.

Axcell and Hall (1970) present some velocity and profile data for air with

a maximum < value of about 4.0. However, the data are clearly dominated by

forced convection and are not in the flow reversal regime.
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Figure 42. Comparison of local similarity model with data and finite
difference results.
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For the natural convection dominated case, only one experimental

investigation has been performed. Hall and Price (1970) obtained some

assisted mixed convection heat transfer data for a vertical heated plate in

air with a maximum c value of about 50. Again, turbulent mixed convection

yielded some surprises since the heat transfer was lower for assisted mixed

convection under certain conditions than for pure natural convection. Only

qualitative velocity and temperature profile information was obtained in

this study; no quantitative profile data are presented.

2. Mixed Convection Models

A number of models for turbulent mixed convection flow have been

developed. However, similar to laminar mixed convection, most of the

models proposed and evaluated deal with the effect of buoyancy or natural

convection on forced flow conditions. The effect of forced convection on a

predominantly buoyancy driven problem has not been as extensively studied.

Models for the turbulent effects in mixed convection are generally in

the eddy viscosity class, although Swanson and Catton (1987) applied the

surface renewal theory to turbulent mixed convection including the flow

reversal regime. Their model gave good results for the heat transfer vari-

ation for opposed mixed convection dominated by forced convection. For the

eddy viscosity approaches, a few zero-equation and two-equation models have

been used as discussed below.

Oosthuizen (1974) proposed the only known model for turbulent mixed

convection flow for buoyancy dominated conditions. His model is based on a

mixing length eddy viscosity approach modified for buoyancy effects. The

mixing length model employed is similar to that used by Cebeci and Khattab

(1975) for pure natural convection. The one adjustable constant in the

model accounting for buoyancy was estimated from the experimental heat

transfer data of Hall and Price (1970) discussed above. The initial de-

crease in heat transfer for assisting conditions as the forced convection

velocity is increased is predicted by the model if the adjustable constant

is correctly chosen. However, due to the sparsity of data, no systematic

attempt to determine the behavior of the constant has been performed, and

mean velocity and temperature profile comparisons were not performed.
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A number of other investigators have used the mixing length eddy vis-

cosity approach for mixed convection for forced convection dominated situa-

tions. Models developed include those by Chen, Armaly, and Ali (1987),

Plumb and Evans (1983), and Nakajima, et al. (1980). The mixing length

used in these models is very similar to that developed by Cebeci and Smith

(1974) which was used by Cebeci and Rhattab (1975) for pure natural convec-

tion flow.

Recently, a number of investigators have used two-equation eddy vis-

cosity (k-c) models to analyze mixed convection. For example, Pietrzyk and

Crawford (1985), Armaly, Ramachandran, and Chen (1986), and Cotton and

Jackson (1987) used this model to investigate turbulent mixed convection

predominantly for the effect of buoyancy assisting conditions on forced

convection dominated problems.

3. Local Similarity Model

Velocity and temperature profile data for mixed convection conditions

dominated by natural convection are not available at the present time. In

addition, most of the turbulent mixed convection models are for forced

convection dominated mixed convection. No model has been fully developed

for buoyancy dominated turbulent mixed convection, although the approach

proposed by Oosthuiien (1974) is encouraging. In the absence of applicable

data and models, the current turbulence model discussed earlier with the ad

hoc mixed convection modifications for laminar flow will be employed.

For application to mixed convection, the displacement boundary layer

thickness, 6*, has to be redefined. The original definition,

a3
6* - I

U

U
dY

0
max

(51)

is not adequate since the value of 6* will continue to change since u does

not go to zero at infinity. For assisted mixed convection, a reasonable

definition would be the integral of
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6* -
i

(u - u >co
U dY*
max

0

(86)

This definition is also reasonable for opposed mixed convection with uni-

directional flow, although this definition has not been used in the present

study since application to SPR is only concerned with opposed mixed con-

vection conditions with flow reversal. For flow reversal conditions, the

following definition is used

y(u-0.)
6* - I

U

U dY*
max

0

(87)

Thus, only the portion of the boundary layer with positive velocity values

is considered for evaluation of the displacement thickness.

A number of questions remain to be answered about the applicability of

the turbulent natural convection boundary layer thickness model to mixed

convection. The scaling used as well as the constant of 2.5 may not be

appropriate for mixed convection conditions. However, since the appli-

cation of the present model is to natural convection dominated conditions,

the boundary layer thickness model should be reasonable. At the present

time, no data are available to evaluate this question.

C. Overall

Mixed convection conditions dominated by natural convection or buoyancy

forces have generally not been investigated for laminar or turbulent flow

conditions. While some velocity profile data for laminar flow are

available for assisted mixed convection, no flow reversal opposed mixed

convection data in the buoyancy dominated regime are available. For

turbulent conditions, no buoyancy dominated velocity profile data are

available under any conditions.

For laminar mixed convection, a local similarity model based on the

natural convection similarity equations has been developed and compared to
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the limited available data. The data-model comparison was surprisingly

good in light of the ad hoc modifications. For turbulent conditions, no

data are available, and modifications to the turbulence model proposed

earlier were developed but could not be tested due to the lack of data.

In calculating the velocity profiles for mixed convection, the end

point, b, was often large. In the numerical calculations, the results for

large values of the end point are sensitive to the initial guesses. Some-

times two different solutions were produced as depicted in Figure 43 de-

pending on the initial assumed profile. However, after considering the

converged solutions, only one is appropriate based on satisfaction of all

the desired boundary conditions. In Figure 43, the top curve is obviously

the preferred solution since the bottom curVe does not have a negligible

slope at the end point, qco.
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V. Summarv and Conclusions

The SPR cavern fluid velocity model for natural convection (Webb

(1988a)) is based on the local similarity approach as implemented in the

Modified Local Similarity (MLS) method (Webb (1988b)). In this applica-

tion, the local similarity equations are based on the natural convection

similarity variables. Provisions for turbulent flow and mixed convection

conditions must be included in the local similarity formulation for

application to the conditions encountered in SPR caverns.

In the development of these models, the traditional shooting method

employed to solve the local similarity equations was unreliable. There-

fore, a finite difference method based on the Box scheme was developed to

solve the equations. This new approach was found to be reliable and robust

in this application.

In order to satisfy the local similarity requirement, an appropriate

turbulence model had to be developed. The one existing turbulence model

that is applicable to the local similarity approach gave unsatisfactory

results. Therefore, another turbulence model was modified to conform to

the local similarity requirements. Comparison of this model to turbulent

velocity profile data gave reasonable to good results.

Application of the natural convection local similarity equations to

mixed convection conditions, which is required in the present case, had not

previously been done. Ad hoc modifications were made to the local simi-

larity equations in order to satisfy the required boundary conditions.

Data-model comparisons for the velocity and temperature profiles in laminar

flow show surprisingly good results, especially for buoyancy dominated con-

ditions. Turbulent data-model comparisons could not be performed due to

the lack of experimental data.

The full local similarity equation set including turbulence and mixed

convection effects is

Yt ,# f
f ) + (n+3)ff"-

l

12
(1 + y 2(n+l) f

% 1
((&+ri;;T- ) 8')' + (n+3)fs' - 4n f'B

t

94

,2
hf +8-OaD 1

(88)

- J(f'- f:) = 0 (89)



where the turbulence model is the local similarity modified Cebeci and

Khattab model developed in this report, or

% - 12 aUI Iay

'i = 0.4~ (1 - exp(-y/A)) (inner region)

1 * 0.075 6 (outer region)
0

1 - min(li,lo)

A = 26 v bwh)
-l/2

6 = 2.5 6*.

y(u-0. >
6* - I

U

U dY

0
max

(36)

(38)

(39)

(40)

(41)

(76)

(87)

The integrated conservation equations, which are necessary for the

evaluation of momentum and energy conservation in the calculated profiles

as discussed in Section II, are

Momentum

va, rlco rlco

9 dq - fi' - 2(n+l) f* + (n+3) fi Jf' dq (90)
0 0 0

Energy

(5n + 3) J

0
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where

f* = f
,*

co 1 r](u-0.) - (9-J)

The first term in f* is the portion of q that f' and fd, are opposite each

other, while the second term is when they are in the same direction. Note

that the above momentum conservation equation is only applicable to opposed

mixed convection with flow reversal or to pure natural convection.

The models developed in this report allow the application of the

natural convection local similarity approach to SPR caverns. Comparison of

the results of each of these models to the available data show reasonable

to good results, although development and full testing of these models has

been hampered by the lack of applicable data. The use of these models in

the SPR fluid velocity model has been shown by Webb (1988a) to provide good

results for the limited available data for velocity and temperature

profiles is enclosures.

In conclusion, the applicability of the local similarity approach to

turbulent and mixed convection conditions has been extended by the present

investigation. Further development and evaluation of these models is

continuing such as the inclusion of buoyancy in the eddy viscosity

expression. However, verification of the models for conditions encountered

in an SPR cavern must await the availability of additional applicable

experimental data.
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VI. Nomenclature

A,B
5
E

f

F

g
Gr

J

k

1

11

q”

N

Nu

Pr

Ra

Ret
Ri

Ri,

T

AT

U

U+

U*

u*

%I

U+

V

X

Y
Y+

coefficients in Cebeci and Khattab model

k-c model coefficient

error

stream function natural convection similarity variable

stream function forced convection similarity variable

gravitational constant

Grashof number

fluid temperature stratification similarity variable

turbulent kinetic energy

mixing length

additional Prandtl mixing length

heat flux

temperature difference constant

Nusselt number

Prandtl number

Rayleigh number

effective Reynolds number

Richardson number

gradient Richardson number

temperature

temperature difference

x-direction velocity

dimensionless velocity in Popov and Yan'kov model

characteristic velocity, = 2(g p x AT)112

friction velocity, - (7,/~)r/~

reference velocity

dimensionless velocity, = u/u*

y-direction velocity

distance along plate surface

distance normal to plate surface

dimensionless distance, - u*y/v
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thermal diffusivity

coefficient of thermal expansion

boundary layer thickness

value of 6 where u - 0.5 L+,,~

turbulent energy dissipation parameter

dimensionless coordinate, - (y/x) Nu

similarity dimensionless coordinate

constant in Popov and Yan'kov model

similarity dimensionless temperature

mixing length constant

mixed convection variable

kinematic viscosity

dimensionless parameter for mixed convection

density

shear stress

shear stress, - ~(&~/ay)~

stream function

variable in Popov and Yan'kov model

Subscripts

f fluid

i inner

max maximum

0 outer

t turbulent

W wall

X value at x

0 as Ri -+ 0
aI value at edge of boundary layer; as Ri + a

Superscripts

n mesh point indice
, derivative with respect to q

* constant heat flux value
-

average value
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ADDendiX A

DeveloDment  of Eddv Viscositv Conservation Eauations

The basic conservation equations for natural convection given in the

Introduction are for laminar flow conditions. For turbulent flow, addi-

tional stresses are produced by turbulence that modify the behavior of the

fluid. The velocity and temperature values can be written as the sum of

mean and fluctuating values, or

u(t) -u+u’ (A-1)

v(t) =v+v’ (A-2)

T(t) =T+T' (A-3)

where the fluctuations around the mean values are due to turbulence.

Assuming small fluctuations, the steady-state turbulent natural convection

equations can then be written as:

mass

*+ av 0
ax Flc

x-momentum

U&+vaU
ax ay

= gB(T-Tf(X))+&

energy

(A-4)

(A-5)

(A-6)

where the standard Boussinesq approximations for natural convection have

been used. The influence of turbulence in the above equations is due to

the fluctuating velocities and temperatures. If the fluctuations are zero,

the above equations reduce to the laminar form given earlier.
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In order to solve the above equations, closure relationships are needed

for the average of the fluctuation terms to complete the equation set.

Turbulent closure models are concerned with predicting the quantities

, ,
uv and u'T':

According to Yang and Aung (1985), two approaches are generally used for

the closure equations for the stress - the Boussinesq eddy viscosity

approach and the stress model.

The Boussinesq eddy viscosity approach assumes that the eddy viscosity

parameter is a scalar, implying an isotropic eddy viscosity, and the

closure relationship for the velocity fluctuation term is

2Lt [g+g).

Making use of the boundary layer

reduces to

(A-7)

behavior that au/ay >> &/ax, the equation

, , au-uv =u
t ay' (A-8)

For the velocity-temperature relationship, the turbulent heat flux is

assumed to vary like Fourier's law, or

, I

-UT aT
= Ot ay * (A-9)

The ratio of the two turbulence parameters is the turbulent Prandtl number,

Prt, or

%
Pr, - a

t
(A-10)

in line with the definition of the molecular Prandtl number
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Pr = E (A-11)

The conservation equations for an eddy viscosity turbulence model are:

mass

au+-*(-)av
ax ay

x-momentum

ue+v-auax ay = gB(T- Tf(~))+a
ay

energy

UE+vaT - a
ax ay ay (a + at> gI I

(A-12)

(A-13)

(A-14)

where the closure equations for vt and at have to be defined. Models for

vt and Pr, (=vJat) are discussed in the main report.

In contrast to the eddy viscosity approach, the stress models for

closure solve transport PDEs for the fluctuation products instead of the

algebraic equations discussed above in the Boussinesq eddy viscosity

method. The turbulent stress is calculated as a tensor instead of as a

scalar thereby relaxing the isotropic assumption made in the Bnussinesq

eddy viscosity model. Note that some results from stress models are

presented in the main report. More'advanced models such as large eddy

simulation and the vortex model are also being developed. These more

advanced techniques, as well as the stress models, are not within the scope

of the present study due to their prohibitive computational requirements.

Information on these other approaches is given by Yang and Aung (1985) and

is not included here.
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ADDendix B

Problems of the Mixing LenPth ADDroach

A problem with the eddy viscosity model is that the turbulent transport

of momentum and energy, as characterized by ut and Pr,, is zero at a velo-

city maximum or minimum since au/ay = 0 as shown by the general expression

, r au
-uv =ut ay’

This problem occurs for the zero-, one-, and two-equation models. However,

(B-1)

the problem is further compounded for the zero-equation models since the

eddy viscosity is also proportional to au/ay, or

, I

-uv =u
au _ 12 au au

tay I Iay ay’ (B-2)

In many cases, the velocity maximum or minimum is located in a region

of symmetry where net momentum or energy transfer is minimum, such as in

the center of a pipe or the center of a symmetrical wake or jet. In these

cases, this problem with the mixing length formulation should not signifi-

cantly effect the mean velocity or temperature profiles for symmetrical

boundary conditions. Work in this area has been reported by Schlichting

(1968) for free turbulent jets and wakes. Differences between results

using the conventional expression and those modified to account for the

way = 0. problem differ little from each other for the above cases.

The mixing length eddy viscosity drawback, however, may be significant

for asymmetrical cases, such as flow in a channel with the walls at two

different temperatures. In this case, the turbulent transport predicted by

a mixing length model across the channel will be minimal due to the velo-

city maximum in the middle of the channel. Prandtl recognized this draw-

back of his mixing length formulation and proposed the following modifi-

cation (see Doshi and Gill (1970))
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Yt=12 j (B-3)

where the mixing length 1, is an additional variable that is determined by

data. By the nature of this modification, two separate mixing lengths have

to be determined, and this form has not often been used. Note, however,

that since the turbulent stress term is still proportional to the mean

velocity gradient, the problem of zero turbulent transport at a velocity

minimum or maximum still exists.

In order to overcome this problem of two mixing lengths and the zero

turbulent transport at velocity minimums and- maximums, Doshi and Gill

(1970,1971)  reformulated the mixing length and resultant turbulent trans-

port expressions in terms of the first and second velocity derivatives with

a single mixing length, 1, equal to the standard value. Thus, they elimi-

nated the extra mixing length variable, lr, so standard expressions are

still applicable, and the mixing length and turbulent transport are nonzero

at or near velocity maximums and minimums.

The Doshi and Gill expressions are

# I
-uv -

l4 d*u 2 l* d2u

4- , - -  2L I dY2 1 dy2

(B-4)

This formulation overcomes a significant problem with the application

of the standard mixing length eddy viscosity approach. The results from

the standard mixing length model and the Doshi and Gill modification are

shown in Figure B-l for a channel with two different wall temperatures.

For the standard mixing length model, the temperature predictions are poor

in the middle of the channel since the velocity gradient is small. The

Doshi and Gill predictions agree much better with the experimental data in

this low velocity gradient region.
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Figure B-l. Effect of Doshi and Gill (1970,1971)  model on temperature
distribution in a two temperature channel (Doshi and Gill
(1971)).
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The importance of the zero slope problem in zero-equation models for

natural convection can be assessed from information presented in Figure B-2

from Henkes and Hoogendoorn (1989b) . The eddy viscosity for the zero-

equation model of Cebeci and Khattab (called Cebeci and Smith in the

figure) and for the two-equation models studied are not significantly

different around the velocity peak, which occurs around r - 1 as shown in

Figure 24 of the main report. The eddy viscosity at the velocity peak is

also significantly below the values in the outer region of the boundary

layer, so the velocity profile will be controlled by the outer region

value. The major difference between the zero- and two-equation models is

in the outer region of the boundary layer. Therefore, the mixing length

problem at the velocity peak is not expected to be significant for natural

convection conditions, and the mixing length modifications discussed above

have not been employed.
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Figure B-2. Variation of eddy viscosity with distance from the wall (Henkes
and Hoogendoorn (1989b)).
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ADDendix c

Turbulent Data Reduction Procedure

In the data-model comparisons presented in the main report for

turbulence, the existing data often had to be modified from the original

presentation. All the data-model comparisons are presented in this report

in terms of the laminar similarity velocity and distance coordinates for

simplicity and to allow direct comparison with laminar results. The

laminar similarity variables are

where

f' -
2 u )6rl12 u = 2 (g p"x AT)1'2

(C-1)

X

rl=-1I-
X

(C-2)

The data reduction procedure to allow this comparison, including any

assumptions, is given in this appendix. Each data set is treated

independently since the technique is dependent on the form of the original

data presentation as well as any additional available information.

The method for the following data sets will be presented in order.

1. Cheesewright (1968).

2. Lock and Trotter (1968).

3. Vliet and Liu (1969).

4. Kutateladze, et al. (1972).

5. Hoogendoorn and Euser (1978).

6. Cheesewright and Ierokiopitis (1982).

7. Miyamoto, et al. (1982).

8. Tsuji and Nagano (1988).
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Cheesewripht

As shown in Figure 4 in the main report, the Cheesewright (1968)

velocity data are presented in terms of

- vs. -Y- Grow'.U

*
U X

The velocity variable is simply equal to 2f' since the u* value used by

Cheesewright is the present definition divided by 2. The distance variable

is the laminar variable with a different power on the Grashof number. The

Grashof number is given in Figure 5, and the conversion is easily made.

The Prandtl number was assumed to be 0.72 in the data-model comparisons.

Lock and Trotter

The Lock and Trotter (1968) data shown in Figure 9 of the main report

are in terms of

u vs.y

where U is equal to f' and y is in the unusual units of 0.1 inches. Thus,

a y value of 2.0 corresponds to a physical distance of 0.2 inches. The

highest Grashof number data presented with sufficient information are used.

The appropriate Grashof and Prandtl numbers as well as the x distance are

6.66 x 108, 10.25, and 10.8 inches, respectively. These data are suffi-

cient for the data-model comparison results.

Vliet and Liu

Figure 10a in the main report shows the velocity data which are in

terms of the variables

U
- vs. -J+
U
max 6
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and sax and 6* are defined in the figure as is the Rayleigh number Ra*.

Figure lob for the temperature profile defines the Ra number for the data.

Based on information in the text, the x distance for the two profiles is 30

and 42 inches with the lower distance corresponding to the lower Rayleigh

number. These distances are the same as used by Mason and Seban (1974).

The Prandtl number used in the similarity analysis is assumed to be equal

to 6.0 in accordance with the Prandtl number range of 5-7. A viscosity (v)

of 0.945 x 10-S ft2/sec is used for consistency with the assumed Prandtl

number based on data in Kreith (1965). The resulting Grashof numbers are

1.9 x lOlo and 6.0 x 1010 for the two velocity profiles.

Kutateladze

The ethyl alcohol (ethanol) velocity data of Kutateladze, et al. (1972)

shown in Figure 12 of the main report are reported in terms of

u vs. y.

The Prandtl number is reported to be 13.2. Rayleigh number, x, AT, and T=

information is presented in the figure caption in the reference. The only

unknown in transforming the data to the desired similarity coordinates is

p, the volumetric expansion coefficient. This value has been calculated

from information given by Wilhoit and Zwolinski (1973) as approximately 1.1

x 10-S l/'C (6.1 x 10-b l/OF) for the reported temperatures.

Hooeendoorn and Euser

The Hoogendoorn and Euser (1978) data were shown in Figure 6 of the

main report in terms of

- vs. J Gr'*'
U

*
U X

just like the original Cheesewright data presentation. The velocity coor-

dinate is simply 2f', while conversion for the y coordinate is simply

dependent on the Grashof number. Using an average Rayleigh number from the

data given on the figure and an assumed Prandtl number of 0.72, the Grashof

number is 9.5 x 109.
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Cheesewrieht and IerokioDitis

Cheesewright and Ierokiopitis (1982) give velocity data in terms of

velocity and distance as shown in Figure 8 of the main report, or

u vs. y.

Information in the reference gives the x distance as 2.2 m and the

Grashof number as 4.83 x lOlo, and the plate temperature is approximately

80°C (176°F). Based on the data reported by To and Humphrey (1986), the

temperature difference between the plate and the environment was 56°C

(lOl"F), so the environmental temperature is 24°C (75°F). These values

allow the calculation of u* assuming p-l/To,  and the translation of y to q.

The Prandtl number was assumed equal to 0.72.

Note that the data attributed to Cheesewright and Ierokiopitis (1982)

by To and Humphrey (1986) are not in the original reference. To and Humph-

rey cite the Grashof number of 5.75 x 1010 which is not given in the refer-

ence. Perhaps these data are given in a more detailed report on the data.

At the present time, the origin of these data is not known and the presen-

tation made by To and Humphrey will not be used for data-model comparison

purposes.

Mivamoto

Figure 13a shows the Miyamoto, et al. (1982) velocity data in terms of

U
- vs. -Y- Nu.
U
max X

The turbulent regime is quoted as being for Gr:Pr values greater than

1.5 x 10'3. Assuming a Prandtl number of 0.72, only two velocity profiles

are clearly in the turbulent regime with Gr: values of 6.68 x 1013 and 1.06

x 1014. To convert the Gr: values to Gr,, the Nusselt number correlation

presented by Miyamoto, et al. (1982) for turbulent flow
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N”X
= 0.104 (GrzPr)

0.272
(G-3)

was used. The resulting Grashof numbers are 1.22 x 1011 and 1.71 x 1011.

This information was also used to convert the (y/x)Nu coordinate to V,J

values.

To convert the velocity data to f' similarity values, the correlation

plotted for the maximum velocity variation

U X
max

*0.288
= 10.9 Gr

v X
(G-4)

was used. Using the similarity relationship

2 Gb2
X

(G-5)

results in

*0.288

f' = u"
10.9 Gr

2 Gr'j2
(c-6)

max
X

which gives the value of f' directly since the Grashof numbers are known.

Tsuii and NaPano

The velocity data of Tsuji and Nagano (1988) in Figure 14b of the main

report are in terms of

u+ vs. y+

c-5



where

U+ -u/u*

Y+ ‘U*Y/V

u* - (rJpP’2

and, for the turbulent experimental data,

Tw/P - 0.684 Grl'll" Ui
X

where

'b
= (g p AT v)?~

(C-7)

(C-8)

(C-9)

(C-10)

(C-11)

Since the fluid is air, /3 is evaluated from l/T,, and the value of v is

equal to 1.60 x 10-b f@/.sec as given by Kreith (1965) for the reported

environmental temperature 16°C (61°F). The temperature difference of 44°C

(79°F) was also used to calculate II,. The assumed Prandtl number is 0.72

for the data-model comparisons.
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